• Title/Summary/Keyword: Hydrogen-transfer reaction

Search Result 164, Processing Time 0.027 seconds

Development of a Mechanistic Model for Hydrogen Generation in Fuel-Coolant Interactions

  • Lee, Byung-Chul;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.99-109
    • /
    • 1997
  • A dynamic model for hydrogen generation by Fuel-Coolant Interactions(FCI) is developed with separate models for each FCI stage, coarse mixing and stratification. The model includes the physical concept of FCI, semi-empirical heat and mass transfer correlation and the concentration diffusion equation with the general non-zero boundary condition. The calculated amount of hydrogen, which is mainly generated in stratification, is compared with the FITS experiments. The model developed in this study shows a good agreement within a range of 10 % fuel oxidation rate and predicts the controlled mechanism of the chemical reaction very well. And this model predicts more accurately than the previous works. It is shown from the sensitivity study that the higher initial temperature of fuel particle is, the larger the reaction rate is. Up to 2700 K of temperature of the particle, the reaction rate increases rapid, which can lead to metal ignition.

  • PDF

Size Effects of MoS2 on Hydrogen and Oxygen Evolution Reaction

  • Ghanashyam, Gyawali;Jeong, Hae Kyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.120-127
    • /
    • 2022
  • Molybdenum disulfide (MoS2) has been widely used as a catalyst for the bifunctional activities of hydrogen and oxygen evolution reactions (HER and OER). Here, we investigated size dependent HER and OER performance of MoS2. The smallest size (90 nm) of MoS2 exhibits the lowest overpotential of -0.28 V at -10 mAcm-2 and 1.52 V at 300 mAcm-2 with the smallest Tafel slopes of 151 and 176 mVdec-1 for HER and OER, respectively, compared to bigger sizes (2 ㎛ and 6 ㎛) of MoS2. The better HER and OER performance is attributed to high electrochemical active surface area (6 × 10-4 cm2) with edge sites and low charge transfer resistance (18.1 Ω), confirming that the smaller MoS2 nanosheets have the better catalytic behavior.

Optimization of Catalytic Reaction for Synthesis of 2-Methyl-4-methoxydiphenylamine (2-Methyl-4-methoxydiphenylamine 합성을 위한 촉매반응의 최적화)

  • Cho, Jeong-Woo;Kim, Eun-Seok;Kim, Kiseok;Kim, Seong-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.293-298
    • /
    • 1999
  • Reaction mechanism was elucidated and reaction condition were optimized for the catalytic reaction synthesizing 2-methyl-4-methoxy-diphenylamine (MMDPA) which is an intermediate of Fluoran heat-sensitive dyestuff. Reactants consisted of 2-methyl-4-methoxyaniline (MMA), 3-methyl-4-nitroanisole (MNA), and cyclohexanone, and 5 wt % Pd/C was used as a catalyst. Experiments were run in an open slurry reactor equipped with reflux condenser, and products were analyzed by means of GC/MS and NMR. MMDPA yield of 90 mole % could be obtained after reaction time of 8~10 hours under the optimal reaction conditions comprising the reaction mass composition of MMA : MNA : cyclohexanone = 1 : 2 : 150 based on MMA input of 0.01 gmoles in xylene solvent, reaction temperature of $160^{\circ}C$, and catalyst amount of 0.5 g. It was found that the rate-determining step of overall reaction was dehydrogenation of the intermediate product obtained from condensation of MMA and cyclohexanone. Overall reaction rate and MMDPA yield were enhanced owing to hydrogen transfer reaction by introducing MNA together with MMA in the reaction mass. Excess cyclohexanone in the reaction mass played an important role of promoting the condensation of MMA and cyclohexanone.

  • PDF

Microwave-mediated Asymmetric Hydrogen Transfer by SBA-15-supported Ruthenium Catalyst (SBA-15 실리카에 고정화된 ruthenium 촉매를 사용한 Microwave하에서의 비대칭 수소 전달반응)

  • Jin, Myung-Jong;Jun, In-Chul
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.752-755
    • /
    • 2008
  • Mesoporous SBA-15 silica-supported TsCHDA and TsDPEN ligands have been prepared by reaction of SBA-15 silica with (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-cyclohaxanediamine or (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-diphenylethylenediamine-1,2-diphenylethylenediamine, respectively. The Ru complexes exhibited excellent catalytic activity and satisfactory enantioselectivity in the asymmetric hydrogen transfer of ketones under microwave conditions. The heterogeneous Ru catalyst was reusable as well as air-stable to allow easy use. Microwave-assisted efficient procedure has been developed for asymmetric hydrogen transfer.

Development of analysis program for direct containment heating

  • Jiang, Herui;Shen, Geyu;Meng, Zhaoming;Li, Wenzhe;Yan, Ruihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3130-3139
    • /
    • 2022
  • Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study, a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal, metal oxidation reaction, debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure, temperature, and hydrogen production in containment well, and for most comparisons the relative errors can be maintained within 20%. Among them, the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.

Theoretical Studies on the Hydrogen Atom Transfer Reaction (Ⅱ)$^*$

  • Lee, Ik-Choon;Song, Chang-Hyun;Lee, Byung-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.362-366
    • /
    • 1985
  • The hydrogen atom transfer reaction between substituted methane, $CH_3X,$ and its radical, $CH_2X(X=H,F,CH_3,CN,OH\;and\;NH_2$ was studied by MINDO/3 method. The transition state(TS) structure and energy barriers were determined and variation of the transition state and of the reactivity due to the change of X were analyzed based on the potential energy surface characteristics. It was found that the greater the radical stabilization energy. the looser the TS becomes; the TS occurs at about 15% stretch of the C-H bond, which becomes longer as the radical stabilization energy of $CH_2X$ increasers. The intrinsic barrier, ${\Delta}E*_{x.x},$ of the reaction with X was found to increase in the order $H The degree of bond stretch of the C-H bond stretch of the C-H bond at the TS also had the same order indicating that the homolytic bond cleavage of the C-H bond is rate-determining. Orbital interactions at the TS between LUMO of the fragment $C{\ldots}H{\ldots}C$ and the symmetry adapted pair of nonbonding, $n{\pm}(=n_1{\pm}n_2),$ or pi orbitals of the two X atoms were shown to be the dominant contribution in determining tightness or looseness of the TS. The Marcus equation was shown to apply to the MINDO/3 barriers and energy changes of the reaction.

Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery (탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과)

  • Kim, Minseong;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Experimental and Theoretical Study on the Effect of Pressure on the Surface Reaction over Platinum Catalyst (백금촉매의 표면반응에 미치는 압력의 영향에 관한 실험 및 이론적 연구)

  • Kim, Hyung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Surface reaction occurs at a certain surface temperature when a catalyst is heated up in a reactive mixture. If homogeneous ignition does not occur, a steady state is observed because the heat produced by the surface reaction is balanced with the heat loss caused by convection, conduction and radiation. The present paper treats the effects of pressure on the surface temperature at the steady state. Hydrogen and oxygen are used as reactants and nitrogen as an inert gas. A spherical platinum catalyst of 1.5 mm in diameter is sustained in the chamber with two wires of 0.1 mm in diameter. As results, there exists a maximum steady temperature at a certain relative hydrogen concentration which increases with total pressure. At the steady state, it can be approximated that the heat release is estimated by the mass transfer considering the effect of natural convection. The experimental results are explained qualitatively by the approximation.

  • PDF

Hydrogen-Atom and Charge Transfer Reactions within Acetylene/Methanol and Ethylene/Methanol Heteroclusters

  • 신동남;최창주;정경훈;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.939-943
    • /
    • 1996
  • Reactions that proceed within mixed acetylene-methanol and ethylene-methanol cluster ions were studied using an electron-impact time-of-flight mass spectrometer. When acetylene and methanol seeded in helium are expanded and ionized by electron impact, the ion abundance ratio, [CH3OH+]/[CH2OH+] shows a propensity to increase as the acetylene/methanol mixing ratio increases, indicating that the initially ionized acetylene ion transfers its charge to adjacent methanol molecules within the clusters. Investigations on the relative cluster ion intensity distributions of [CH3OH2+]/[CH3OH+] and [(CH3OH)2H+]/[CH3OH·CH2OH+] under various experimental conditions suggest that hydrogen-atom abstraction reaction of acetylene molecule with CH3OH ion is responsible for the effective formation of CH2OH ion. In ethylene/methanol clusters, the intensity ratio of [CH3OH2]/[CH3OH] increases linearly as the relative concentration of methanol decreases. The prominent ion intensities of (CH3OH)mH over (CH3OH)m-1CH2OH ions (m=1, 2, and 3) at all mixing ratios are also interpreted as a consequence of hydrogen atom transfer reaction between C2H4 and CH3OH to produce the protonated methanol cluster ions.