• Title/Summary/Keyword: Hydrogen-peroxide

Search Result 2,190, Processing Time 0.024 seconds

Cathode Catalyst of Direct Borohydride/Hydrogen Peroxide Fuel Cell for Space Exploration (우주탐사용 직접 수소화붕소나트륨/과산화수소 연료전지의 환원극 촉매)

  • YU, SU SANG;OH, TAEK HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.444-452
    • /
    • 2020
  • This study investigated the cathode catalyst of direct borohydride/hydrogen peroxide fuel cells for space exploration. Various catalysts such as Au, Ag, and Ni were supported on multiwalled carbon nanotubes (MWCNTs). Various techniques, such as transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and X-ray diffraction were conducted to investigate the characteristics of the catalysts. Fuel cell tests were performed to evaluate the performance of the catalysts. Ag/MWCNTs exhibited better catalytic activity than the Ni/MWCNTs and better catalytic selectivity of the Au/MWCNTs. Ag/MWCNTs presented good catalytic activity and selectivity even at an elevated operating temperature. The performance of Ag/MWCNTs was also stable for up to 60 minutes.

Measurement of Hydrogen Peroxide in the Atmosphere of Kwangju (광주시 대기중의 Hydrogen Peroxide 측정)

  • 심재범;홍상범;최중호;이재훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.315-316
    • /
    • 2003
  • 대기중 광화학반응에서 생산되는 이차 생성물중의 하나인 $H_2O$$_2$(hydrogen peroxide)는 peroxy radicals간의 결합에 의해 생성된다. HO$_2$ + HO$_2$ $\longrightarrow$ $H_2O$$_2$+ $O_2$ 이렇게 생성된 $H_2O$$_2$는 대기중에서 주요 산화제로 작용하며, pH 4.5 이하 수용액 내에서 S(IV)를 S(VI)로 산화시켜 H$_2$SO$_4$(sulfuric acid)를 생성 한다. 또한 $H_2O$$_2$는 대기중에서 odd-hydrogen radicals(OH, HO$_2$, and RO$_2$)의 저장고 역할과 함께 odd-hydrogen radical의 생성과 소멸에 작용하여 대기의 산화력을 반영한다(Lee et al. 2000). (중략)

  • PDF

The Effect of Hydrogen Peroxide Bleaching on the Properties of Hardwood Kraft Pulp Absorbed with Birchwood Xylan

  • Li, Lizi;Lee, Sang-Hoon;Lee, Hak-Lae
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2010.04a
    • /
    • pp.195-206
    • /
    • 2010
  • Xylan can be applied to improve the strength properties of paper; however the optical properties, such as brightness, are decreased significantly. To solve that problem, an applicable bleaching process is therefore desired. The aim of this research was to investigate the impact of hydrogen peroxide bleaching on hardwood kraft pulp pretreated with birchwood xylan by measuring optical properties (whiteness, brightness, opacity) as well as physical properties (tensile index, tearing index, bulk) of handsheets made from the bleached pulp. Hydrogen peroxide bleaching, as a kind of totally chlorine free (TCF) bleaching method, is quite important industrially for chemical pulp. In our work, the process variables of peroxide bleaching including bleaching temperature, time, initial pH and $MgSO_4$ dosage were studied. The results showed that both good mechanical properties and optical properties could be achieved when the operating parameters were controlled properly and therefore hydrogen peroxide bleaching was proved to be a suitable method for bleaching hardwood kraft pulp with adsorption of birchwood xylan.

  • PDF

Basic Study for Distillation of Rocket Grade Hydrogen Peroxide (추진제 급 과산화수소 증류를 위한 기초 연구)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.67-70
    • /
    • 2009
  • Because many research using rocket grade peroxide is studied, distillation method for domestic production of rocket grade hydrogen peroxide is required. Distillation methods are very various and divided by feeding method, distillation time, distillation pressure, and so on. Among these, vacuum distillation is a suitable method for hydrogen peroxide. This method can reduce thermal decomposition and reaction with impurities. Distillation condition is determined by Raoult's law. Low vacuum level and vacuum level control are appeared as important problems of the experiment equipment, which are solved by using less leakage vacuum chamber and metering valve.

  • PDF

Modeling and Optimizing Brightness Development in Peroxide Bleaching of Thermomechanical Pulp

  • Wang, Li-Jun;Park, Kyoung-Hwa;Yoon, Byung-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.86-94
    • /
    • 1999
  • Alkaline peroxide bleaching of chemi-mechanical pulp is a very complicated system where various process factors affect the bleacing performance and pulp properties. Traditional onefactor-at a time method is ineffective and costly infinding the optimal bleaching conditions. In this study, statistical experimental design and multiple regression method wre used to investigated the interactions among various bleaching factors and to find out the possbile maximal brightness development during one stage alkaline peroxide bleacing of TMP. The TMP was made from 10% Korean red pine and 90% Korean spruce and had an initial brightness of 54.5% ISO. the TMP was pretreated with EDTA(0.5% on O.D. pulp, 3% pulp consistency, 30$^{\circ}C$ for 60 minutes) and bleached in a 2 L Mark V Quantum Reactor at 750 rmp, 7.5% of bleaching consistency and with 0.05% magnesium sulfate addition. The ranges of chemical factors studied , based on oven-ried pulp, were 1-5% for hydrogen peroxide, 1-4% for sodium hydroxide and 1-4% for sodium silicate. The rages of reaction temperature and time were 50-90$^{\circ}C$ and 40-180minutes respectively. Interactions of hydrogen peroxide with alkali , time with temperature ature, alkali with time and silicate with temperature were found to be significant which means that hydrogen peroxide bleaching will be favored at stable concentration of perhydroxyl ion, relatively short time and low temperature, and high level of silicate. Mathematical model which has good predictability for target brightness in one stage peroxide bleaching can also be established easily. Base ion the model, maximal brightness of 70% ISO was found to at 50$^{\circ}C$ and 50 minutes by chemical additions of 5% for hydrogen peroxide, 3.2-3.4% for sodium hydroxide and 4% for silicate based on O.D. pulp. However, this result might not be suitable for situation where furnishes are different from ours, or different pretreatment is used, or bleaching carried out at different pulp consistency. In these cases it will be good to re-investigate the process by a similar methodology as was used in this study.

  • PDF

AN EXPERIMENTAL STUDY ON BOND STRENGTH OF COMPOSITE RESIN TO BLEACHED ENAMEL (표백된 법랑질에 대한 복합레진의 결합강도에 관한 연구)

  • Yu, Mi-Kyung;Lee, Kwang-Won;Song, Kwang-Yeob;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.114-123
    • /
    • 1994
  • The purpose of this study was to examine the shear bond strength of resin-enamel bond formed at specific time intervals after the termination ov vital bleaching. A total of 72 human extracted maxillary premolars were divided into nine groups : untreated control (group 1) ; enamel treated with 35% hydrogen peroxide(group 2, 3, 4, 5) ; and enamel reated with 15% carbamide peroxide gel (group 6, 7, 8, 9). After the treatment with 35% hydrogen peroxide for 2 hours and 15% carbamide peroxide for 24 hours, adhesion of a resin to bleached enamel was formed at 1 hour (group 2, 6) and 24 hours(group 3, 7) ; 3days(group 4, 8) and 7 days(group 5, 9) post-termination of bleaching treatment. A $3{\times}3mm$ mold was filled with Scotchbond Multi-Purpose and Z100. After 24 hours later, the specimens were shear-tested at crosshead speed 1mm/min and analyzed statistically. Fractured specimens from group 1,2, 6 were gold-coated with Eiko ion coater and observed under Scanning electron microscope at 25KV. The following results results were obtained : 1. Bonds formed at 1 hour post-termination of 35 % hydrogen peroxide(P<0.01) and 15 % carbamide peroxide bleaching treatment groups(P<0.05) showed significantly lower shear bond strength than untreated group. 2. Bonds formed at 24 hours, 3 days and 7 days post-termination of 35% hydrogen peroxide and 15 % carbamide peroxide bleaching treatment groups showed no significant differences in shear bond strength with untreated group(p>0.05). 3. SEM examinations of the untreated fracture specimen indicated cohesive fracture within enamel and exposed enamel prisms, but the bleached fracture specimens indicated adhesive fracture.

  • PDF

Reaction Characteristics of 4-Methylcatechol 2,3-Dioxygenase from Pseudomonas putida SU10

  • Ha, You-Mee;Jung, Young-Hee;Kwon, Dae-Young;Kim, Young-Soo;Kim, Chy-Kyung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • Reaction characteristics of 4-methylcatechol 2,3-dioxygenase (4MC230) purified from Pseudomonas putida SU10 with a higher activity toward 4-methylcatechol than catechol or 3-cethylcatechol were studied by altering their physical and chemical properties. The enzyme exhibited a maximum activity at pH 7.5 and approximately 40% at pH 6.0 for 4-methylcatechol hydrolysis. The optimum temperature for the enzyme was around $35^{\circ}C$, since the enzyme was unstable at higher temperature. Acetone(10%) stabilized the 4MC230. The effects of solvent and other chemicals (inactivator or reactivator) for the reactivation of the 4MC230 were also investigated. Silver nitrate and hydrogen peroxid severely deactivated the enzyme and the deactivation by hydrogen peroxide severely deactivated the enzyme and the deactivation by hydrogen peroxide was mainly due to the oxidation of ferrous ion to ferric ion. Some solvents acted as an activator and protector for the enzyme from deactivation by hydrogen peroxide. Ascorbate, cysteine, or ferrous ion reactivated the deactivated enzyme by hydrogen peroxide. The addition of ferrous ion together with a reducing agent fully recovered the enzyme activity and increased its activity abut 2 times.

  • PDF

Dyeing Properties of Wool Using Hydrogen Peroxide/Glyoxal Redox System (과산화수소/글리옥살 산화환원계를 사용한 양모의 염색성)

  • Jeong, Dong Seok;Lee, Mun Cheul;Lee, Young Hee;Kim, Kyung Hwan
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 1996
  • Wool fabric and merino wool top were dyed with two dyes, C.I. Acid Red 13 and C.I. Direct Blue 1 in presence of hydrogen peroxide/glyoxal redox system at various conditions such as dyeing time, temperature and redox concentration. The pH of dye bath was 4.5 in buffer solution of $KH_{2}PO_{4}$ (0.1mol/1)/$Na_{2}HPO_{4}$ (0.1mol/1). Also dyeing of cotton fabric was carried out with C.I. Direct Blue 1 in absence or presence of redox system. The color depth(K/S) increased with redox concentration and dyeing temperature. The increases in dyeing rate and equilibrium dye exhaustion of Acid Acid 13 and Direct Blue 1 on wool fiber and fabric in the present of hydrogen peroxide/glyoxal have been caused by decreasing in pH value during dyeing process which due to the decomposition of hydrogen ion in glyoxal with the assistance of hydrogen peroxide. But the decreases in exhaustion of Direct Blue 1 on cotton may be attributed to repulsive interac ion between salt and salt.

  • PDF

Oxidative Modification of Neurofilament-L by Copper-catalyzed Reaction

  • Kim, Nam-Hoon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.488-492
    • /
    • 2003
  • Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for neuronal survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of copper and peroxide in the modification of NF-L. When disassembled NF-L was incubated with copper ion and hydrogen peroxide, then the aggregation of protein was proportional to copper and hydrogen peroxide concentrations. Dityrosine crosslink formation was obtained in copper-mediated NF-L aggregates. The copper-mediated modification of NF-L was significantly inhibited by thiol antioxidants, N-acetylcysteine, glutathione, and thiourea. A thioflavin-T binding assay was performed to determine whether the copper/$H_2O_2$ system-induced in vitro aggregation of NF-L displays amyloid-like characteristics. The aggregate of NF-L displayed thioflavin T reactivity, which was reminiscent of amyloid. This study suggests that copper-mediated NF-L modification might be closely related to oxidative reactions which may play a critical role in neurodegenerative diseases.

Vanadium(IV)-Catalyzed Oxidation of Dimethylsulfoxide by Hydrogen Peroxide (바나듐(IV) 촉매존재하에서 과산화수소에 의한 디메틸술폭시드의 산화반응)

  • Chang-Su Kim;Sang-Chil Moon;Seung-Hyun Chang
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.567-574
    • /
    • 1988
  • Kinetic studies on the vanadium(IV)-catalyzed oxidation of dimethylsulfoxide by hydrogen peroxide in water and aqueous methanol and ethanol show that the reaction is the first order in the concentration of dimethylsulfoxide and hydrogen peroxide, respectively. Activation parameters are also measured for the oxidation of dimethylsulfoxide. It is suggested that the rate determining step is a process involving oxidation of dimethylsulfoxide as the result of nucleophilic attack by the sulfur on the O-O bond of vanadium(V)-peroxide complex.

  • PDF