• Title/Summary/Keyword: Hydrogen-enriched gaseous fuel

Search Result 5, Processing Time 0.017 seconds

A Study on Combustion Characteristics with Ethanol and Hydrogen Enriched Gas Addition in Gasoline Engine (가솔린 엔진에서 에탄올 및 수소농후가스 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Ki-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2928-2933
    • /
    • 2008
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

  • PDF

The Effect of the Excess Air Factor on the Emission Characteristics of the SI Engine Fueled with Gasoline-Ethanol and Hydrogen Enriched Gas (공기과잉률의 변화가 에탄올 및 수소농후가스 혼합연료 기관의 배기 특성에 미치는 영향)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.334-342
    • /
    • 2009
  • Trends in the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and has lower $CO_2$ emissions than gasoline, ethanol produced from biomass is expected to be used more frequently as an alternative fuel. It is recognized that for spark ignition (SI) engines, ethanol has the advantages of high octane number and high combustion speed. Due to the disadvantages of ethanol, it may cause extra wear and corrosion of electric fuel pumps. On-board hydrogen production out of ethanol is an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol are also examined. As a result, thermal efficiency increase compared to gasoline. Also, reductions in $CO_2$, NOx, and THC combustion products for ethanol vs. gasoline are described.

The Performance and Emission Characteristics on Operating Condition for the SI Engine Fuel with Gasoline-Ethanol and Hydrogen Enriched Gas (에탄올 및 수소농후가스 혼합연료 기관의 운전영역에 따른 성능 및 배기 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Oh, Seung-Mook;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.23-30
    • /
    • 2010
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The results obtained from experiments have shown that specific fuel consumption has increased by increasing ethanol amount in the blend whereas decreased by the use of hydrogen-enriched gas. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

Characteristics of Partial Oxidation Reforming with Various Sorts of Hydrocarbon Fuel (연료의 종류에 따른 부분산화 반응 특성에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.46-52
    • /
    • 2009
  • Hydrogen can extend the lean misfire limit to a large extent when it is mixed with conventional fuels for an internal combustion engine. This study is about fuel reforming to produce hydrogen enriched gas as a fuel for engine. Especially gasoline, which consists of numerous hydrocarbon fuels, considered as source of reformed gas. Various hydrocarbons, including commercial fuel were reformed and potentialities of reformed gas on vehicles were accessed. The reforming efficiency and hydrogen yield were observed. Maximum hydrogen yield were found with different gas hourly space velocity(GHSV) and O2/C ratio of reforming conditions.

  • PDF

Lean Operation Characteristics of a Spark Ignition Engine with Reformed Gas Addition (전기점화 엔진에서 개질가스 첨가에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong;Choi, Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.170-177
    • /
    • 2006
  • Hydrogen can extend the lean misfire limit to a large extent when it is mixed with conventional fuels for a spark ignition engine. In this study, hydrogen-enriched gaseous fuels by reforming process were simulated according to their proportions of $H_2$, CO, $CO_2$ and $N_2$ gases. Pure hydrogen and two different hydrogen-enriched gaseous mixtures(A-, B-composition) were tested for their basic effects on the engine performances and emissions in a single cylinder research engine. A- and B-composition showed different results from 100% $H_2$ addition because air/fuel mixtures were more diluted by their additions. Even though the energy fraction of reformed gases was increased, combustion stabilities and lean misfire limits were not sensitively improved. It means that combustion augmentation by $H_2$ addition was offset by the charge dilution of $N_2$ and $CO_2$. In addition, the low flammability of CO gas deteriorated thermal efficiencies. CO emission was drastically increased with B-composition which included higher CO component. However, $NO_x$ was reduced as energy fraction($X_e$) rised except for the case of 100% $H_2$ addition at $\lambda=1.2$ and was, for A-composition, lowered to a factor of ten when compared with that of $H_2$ addition. HC emissions were largely influenced by $COV_{imep}$ due to misfire and partial burns.