• Title/Summary/Keyword: Hydrogen sulfide ($H_2S$)

Search Result 277, Processing Time 0.026 seconds

Reuse of Hydrogen Sulfide by Ferric Chelate Reaction of Food Waste Anaerobic Digestion Gas, Sulfur Recovery and its Economic Evaluation (킬레이트 착화학반응에 의한 음식물폐기물 혐기소화가스 중 황화수소의 제거와 황회수 및 경제성평가)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2014
  • Several experiments have been done to investigate the removal of hydrogen sulfide ($H_2S$) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1-1 M Fe/EDTA solution. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by chelate. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed with minor potential for further pollution. As the Fe-EDTA concentration increased, the conversion rate of hydrogen sulfide increased because of the high stability of Fe-EDTA complex. pH as an important environmental factor was 9.0 for the stability of chemical complex in the oxidation of hydrogen sulfide.

Application of Screening Technology for Capture of Hydrogen Sulfide Using Ionic Liquids (이온성 액체의 황화수소의 포집을 위한 스크리닝 기법의 활용)

  • Han, Sangil;Lee, Bong-Seop
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.41-45
    • /
    • 2019
  • Hydrogen sulfide ($H_2S$) is mainly produced along with methane and hydrocarbons in many gas fields as well as hydrodesulfurization processes of crude oils containing sulfur compounds and the emission of $H_2S$ has a considerable effect on both environmental problem and human health aspects due to formation of, e.g. acid rain and smog. In recent years, ionic liquids (ILs) have been proposed as the most promising solvents for $CO_2$ and hazardous pollutants capture, such as $H_2S$ and sulfur dioxide ($SO_2$). In this work, we demonstrate the use of the predictive COSMO-SAC model for the prediction of Henry's law constant of $H_2S$ in ILs. Furthermore, the method is used to screen for potential IL candidates for $H_2S$ capture from a set of 2,624 ILs formed from 82 cations and 32 anions. The effects of cation on the Henry's law constant of $H_2S$ such as (i) the variation of the alkyl chain length on cation, (ii) the substituent of methyl group ($-CH_3$) for H in C(2) position and (iii) the change of ring structure for cation family are clearly predicted by COSMO-SAC model.

Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S) (황화수소(H2S) 감지를 위한 아세트산 납이 침염된 폴리에스터(PET) 섬유 기반의 변색성 센서)

  • Lee, Junyeop;Do, Nam Gon;Jeong, Dong Hyuk;Jung, Dong Geon;An, Hee Kyung;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.360-364
    • /
    • 2020
  • In this study, the colorimetric sensor, polyester (PET) fabric dyed with lead (II) acetate (Pb(C2H3O2)2), was fabricated and characterized for the detection of the hydrogen sulfide (H2S). The surface morphology of the fabric was determined using scanning electron microscope and energy-dispersive X-ray spectroscopy. The optical properties of the fabric were evaluated by measuring the variation in the blue value of an RGB sensor. The fabric showed a significant color change, high linearity (R2 : 0.98256), and fast response time (< 1.0 s) when exposed to H2S. This is because the sensor is highly porous and permeable to the gas. The fabric can not only be used as a hydrogen sulfide sensor but also be used to detect and prevent H2S influx using sticky tape on pipelines.

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gas -II. Kinetics of Suffidation on Zinc Oxide - (고온석탄가스에서 황화물을 제거하기 위한 다공성 흡착제의 개발 -II. 산화아연의 황화반응에 관한 연구-)

  • 서인식;이재복;류경옥
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-22
    • /
    • 1988
  • Calcium oxide, lithium oxide and titanium oxide were investigated as additives of zinc oxide for the removal of hydrogen sulfide at high temperature. This experiment was performed in the range of 1.0-2.0 vol.% H$_2$S concentration at 623-873 K reaction temperature, using a thermogravimetric analyzer. A pore blocking model was found to fit the reaction rate and the kinetics data were sucessfully expressed by this model. The reactions between additive sorbents and hydrogen sulfide were first order with respect to hydrogen sulfide concentration in a gaseous mixture with nitrogen. Among the used sorbents, ZnO-CaO 0.5 at.% and ZnO-TiO$_2$ 2.0 at.% sorbents had the best additive effects on the sulfidation reaction between additive sorbents and hydrogen sulfide, whereas the ZnO-Li$_2$O sorbents were ineffective.

  • PDF

Desulfurization of Biogas Using Micro Bubble in a Biogas Plant (미세버블을 이용한 바이오가스 탈황정제 연구)

  • Tak, Bong-Yul;Tak, Bong-Sik;Kim, Chan-Gyu;Min, Gil-Ho;Jang, Choon-Man
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.518-523
    • /
    • 2013
  • This paper describes the reduction of a hydrogen sulfide ($H_2S$) generated from a biogas plant. Micro bubble system is adopted to supply air into the water in the reaction chamber, which can increase the contact area of the supplied air to the reserving water. Two stage reaction chambers having two reaction rooms are designed and manufactured to enhance the reduction rate of a hydrogen sulfide. Sodium hydroxide (NaOH) is also considered to get rid of a hydrogen sulfide. Air volume rate to the water in a reaction chamber is maintained between 0.5 and $1.0m^3/min$. Throughout experimental measurement of the concentration of a hydrogen sulfide by changing the volume of supplied air into the water, reduction rate of a hydrogen sulfide increases as air volume increases. Adding sodium hydroxide to the water with the air supply can reduce effectively a hydrogen sulfide up to 99.5% from biogas. It is noted that a hydrogen sulfide generated by a biogas plant can reduce by supplying micro bubble air and sodium hydroxide effectively.

The sulfide stress corrosion cracking characteristics of multi-pass welded A106 Gr B steep pipe (A106 Gr B강 다층용접부의 황화물 응력부식균열 특성)

  • Lee, Gyu-Young;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.20-25
    • /
    • 2008
  • Sulfide stress corrosion cracking (SSCC) of materials exposed to oilfield environment containing hydrogen sulfide ($H_2S$) has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_2S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $H_2S$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

A study of the sulfide stress corrosion cracking characteristic of A106 Gr B steep pipe weldment (황화수소환경에서 A106 Gr-B 강 용접부의 응력부식균열 특성 평가)

  • Lee, Gyu-Young;Park, Kwang-Jin;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.114-119
    • /
    • 2007
  • Sulfide stress cracking (SSC) of materials exposed to oilfield environment containing hydrogen sulfide $(H_{2}S)$ has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_{2}S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $(H_{2}S)$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

A Study on Pattern Analysis of Odorous Substances with a Single Gas Sensor

  • Kim, Han-Soo;Choi, Il-Hwan;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.423-430
    • /
    • 2016
  • This study used a single metal oxide semiconductor (MOS) sensor to classify the major odorous gases hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and toluene ($C_6H_5CH_3$). In order to classify these odorous substances, the voltage on the MOS sensor heater was gradually reduced in 0.5 V steps 5.0 V to examine the changes to the response by the cooling effect on the sensor as the voltage decreased. The hydrogen sulfide gas showed the highest sensitivity compared to odorless air under approximately 2.5 V and the ammonia and toluene gases showed the highest sensitivity under approximately 5.0 V. In other words, the hydrogen sulfide gas reacted better in the low temperature range of the MOS sensor, and the ammonia and toluene gases reacted better in the high-temperature range. In order to analyze the response characteristics of the MOS sensor by temperature in a pattern, a two-dimensional (2D) x-y pattern analysis was introduced to clearly classify the hydrogen sulfide, ammonia, and toluene gases. The hydrogen sulfide gas was identified by a straight line with a slope of 1.73, whereas the ammonia gas had a slope of 0.05 and the toluene gas had a slope of 0.52. Therefore, the 2D x-y pattern analysis is suggested as a new way to classify these odorous substances.

Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide (화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과)

  • Lee, Min Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1342-1350
    • /
    • 2013
  • We examined the effect of hydrogen sulfide ($H_2S$) in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased by cobalt chloride ($CoCl_2$), a well-known hypoxia mimetic agent in a time- and dose- dependent manner. Sodium hydrosulfide (NaHS, a donor of $H_2S$) pretreatment before exposure to $CoCl_2$ significantly attenuated the $CoCl_2$-induced decrease of cell viability. $CoCl_2$ treatment resulted in an increase of intracellular ROS generation, which is inhibited by NaHS or N-acetyl-cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by NaHS or NAC. The $CoCl_2$-induced increase of the Bax/Bcl-2 ratio was attenuated by NaHS, NAC, and SB 203580 (p38 MAPK inhibitor). The $CoCl_2$-induced decrease of cell viability was also attenuated by NaHS, NAC, and SB 203580 pretreatment. Additionally, NaHS inhibited the $CoCl_2$-induced COX-2. Similar to the effect of NaHS, NAC blocked $CoCl_2$-induced COX-2 expression. Furthermore, NS-398 (a selective COX-2 inhibitor) attenuated not only the $CoCl_2$-induced increase of the Bax/Bcl-2 ratio, it also decreased cell viability. Taken together, $H_2S$ protects primary cultured mouse hepatocytes against $CoCl_2$-induced cell injury through inhibition of the ROS-activated p38 MAPK cascade and the COX-2 pathway.

Effect of Sulfide Removal on Sulfate Reduction at pH 5 in a Hydrogen Fed Gas-Lift Bioreactor

  • Bijmans, Martijn F.M.;Dopson, Mark;Ennin, Frederick;Lens, Piet N.L.;Buisman, Cees J.N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1809-1818
    • /
    • 2008
  • Biotechnological treatment of sulfate- and metal-ions-containing acidic wastewaters from mining and metallurgical activities utilizes sulfate-reducing bacteria to produce sulfide that can subsequently precipitate metal ions. Reducing sulfate at a low pH has several advantages above neutrophilic sulfate reduction. This study describes the effect of sulfide removal on the reactor performance and microbial community in a high-rate sulfidogenic gas-lift bioreactor fed with hydrogen at a controlled internal pH of 5. Under sulfide removal conditions, 99% of the sulfate was converted at a hydraulic retention time of 24 h, reaching a volumetric activity as high as 51 mmol sulfate/l/d. Under nonsulfide removal conditions, <25% of the sulfate was converted at a hydraulic retention time of 24 h reaching volumetric activities of <13 mmol sulfate/l/d. The absence of sulfide removal at a hydraulic retention time of 24 h resulted in an average $H_2S$ concentration of 18.2 mM (584 mg S/I). The incomplete sulfate removal was probably due to sulfide inhibition. Molecular phylogenetic analysis identified 11 separate 16S rRNA bands under sulfide stripping conditions, whereas under nonsulfide removal conditions only 4 separate 16S rRNA bands were found. This shows that a less diverse population was found in the presence of a high sulfide concentration.