• Title/Summary/Keyword: Hydrogen safety

Search Result 700, Processing Time 0.032 seconds

The Use of Near Infrared Reflectance Spectroscopy (NIRS) for Broiler Carcass Analysis

  • Hsu, Hua;Zuidhof, Martin J.;Recinos-Diaz, Guillermo;Wang, Zhiquan
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1510-1510
    • /
    • 2001
  • NIRS uses reflectance signals resulting from bending and stretching vibrations in chemical bonds between carbon, nitrogen, hydrogen, sulfur and oxygen. These reflectance signals are used to measure the concentration of major chemical composition and other descriptors of homogenized and freeze-dried whole broiler carcasses. Six strains of chicken were analyzed and the NIRS model predictions compared to reference data. The results of this comparison indicate that NIRS is a rapid tool for predicting dry matter (DM), fat, crude protein (CP) and ash content in the broiler carcass. Males and females of six commercial strain crosses of broiler chicken (Gallus domesticus) were used in this study (6$\times$2 factorial design). Each strain was grown to 16 weeks of age, and duplicate serial samples were taken for body composition analysis. Each whole carcass was pressure-cooked, homogenized, and a representative sample was freeze-dried. Body composition determined as follows: DM by oven dried method at 105$^{\circ}C$ for 3 hours, fat by Mojonnier diethyl ether extraction, CP by measuring nitrogen content using an auto-analyzer with Kjeldhal digest and ash by combustion in a muffle furnace for 24 hour at 55$0^{\circ}C$. These homogenized and freeze-dried carcass samples were then scanned with a Foss NIR Systems 6500 visible-NIR spectrophotometer (400-2500nm) (Foss NIR Systems, Silver Spring, MD., US) using Infra-Soft-International, ISI, WinISl software (ISI, Port Matilda, US). The NIRS spectra were analyzed using principal component (PC) analysis. This data was corrected for scatter using standard normal “Variate” and “Detrend” technique. The accuracy of the NIRS calibration equations developed using Partial Least Squares (PLS) for predicting major chemical composition and carcass descriptors- such as body mass (BM), bird dry matter and moisture content was tested using cross validation. Discrimination analysis was also used for sex and strain identification. According to Dr John Shenk, the creator of the ISI software, the calibration equations with the correlation coefficient, $R^2$, between reference data and NIRS predicted results of above 0.90 is excellent and between 0.70 to 0.89 is a good quantifying guideline. The excellent calibration equations for DM ($R^2$= 0.99), fat (0.98) and CP (0.92) and a good quantifying guideline equation for ash (0.80) were developed in this study. The results of cross validation statistics for carcass descriptors, body composition using reference methods, inter-correlation between carcass descriptors and NIRS calibration, and the results of discrimination analysis for sex and strain identification will also be presented in the poster. The NIRS predicted daily gain and calculated daily gain from this experiment, and true daily gain (using data from another experiment with closely related broiler chicken from each of the six strains) will also be discussed in the paper.

  • PDF

Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell (그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.

The Effects of Low-dose Electron Beam Irradiation on Quality Characteristics of Stored Apricots (저선량 전자선 조사가 살구의 저장 중 품질특성에 미치는 영향)

  • Lee, Jeong-Ok;Lee, Seong-A;Kim, Mi-Seon;Hwang, Hye-Rim;Kim, Kyoung-Hee;Chun, Jong-Pil;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.7
    • /
    • pp.934-941
    • /
    • 2008
  • Effect of electron beam irradiation (1 and 2 kGy) on apricot was determined in order to develop preservation techniques to enhance shelf-life during 2 weeks at room temperature. Aerobic bacteria and molds/yeasts in apricot were reduced significantly with the increase of irradiation dose. Hardness of apricots decreased during storage by irradiation. Hunter's color value results showed that lightness and redness of irradiated samples were low compared with control samples. Also, sensory test resulting overall acceptability was not significantly different by 1 kGy irradiation during the storage days. Reducing sugar contents was increased gradually, and value of irradiated samples was high compared with non-irradiated sample. Organic acid contents of 2 kGy irradiated samples was not significantly changed during storage. In pH, total sugar, hydrogen donating activity and vitamin C contents, there were no significant differences between treatments. The electron beam treatment on apricots at 1 and 2 kGy did not affect pH, total sugar, hydrogen donating activity and vitamin C contents but improved microbial safety.

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

Microbial and Physico-chemical Characteristics of a Maesil(Prunus mume) Treated with Low Levels of Gamma Rays (저선량 감마선 조사에 의한 매실의 미생물학적 및 이화학적 특성 평가)

  • Lee, Seong-A;Kim, Kyung-Hee;Kim, Mi-Seon;Park, No-Kyoung;Yook, Hong-Sun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.989-996
    • /
    • 2008
  • In this study we assessed the effects of gamma irradiation ($0.5{\sim}3\;kGy$) on the microbial and physico-chemical characteristics of maesil (Prunus mume) stored for 9 days at $20^{\circ}C$. Total aerobic bacteria, yeasts and molds were significantly decreased with increases in the irradiation dosage. In terms of the Hunter's color value, irradiated samples evidenced a higher b-value, but a lower a-value than the non-irradiated samples. Hardness was reduced with increment in the irradiation dose level. The contents of total sugar, hydrogen donating activity and organic acids were not affected by irradiation. The reducing sugar contents of the irradiated samples were superior to those of the non-irradiated samples. Vitamin C contents were reduced with the progression of storage periods and increases in the dosage level. These results demonstrated that gamma irradiation of 0.5 to 3 kGy affected the microbiological safety of maesil, but did not affect the physico-chemical characteristics(total sugar, hydrogen donating activity and organic acid) but the Hunter's color value, hardness, and vitamin C contents of the maesil deteriorated with gamma irradiation.

  • PDF

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Application of Granulated Coal Ash for Remediation of Coastal Sediment (연안 저질 개선을 위한 석탄회 조립물의 활용)

  • Kim, Kyunghoi;Lee, In-Cheol;Ryu, Sung-Hoon;Saito, Tadashi;Hibino, Tadashi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper aims to explain the safety assessment and remediation mechanism of Granulated Coal Ash (GCA) as a material for the remediation of coastal sediments and to evaluate the improvement of the sediment in Kaita Bay, where GCA was applied. The concentrations of heavy metal contained in GCA and the dissolved amounts of heavy metal from GCA satisfied the criteria for soil and water pollution in Japan. The mechanisms on the remediation of coastal sediments using GCA is summarized as follows; (1) removal of phosphate and hydrogen sulfide (2) neutralization of acidic sediment (3) oxidation of reductive sediment (4) increase of water permeability (5) increase of soil strength (6) material for a base of seagrass. From the results obtained from the field experiment carried out in Kaita Bay, it was clarified that GCA is a promizing material for remediation of coastal sediment. This remediation technology can contribute to promote waste reduction in society and to decrease cost of coastal sediment remediation by applying GCA in other polluted coastal areas.

Effect of Process Gas and Burner Gas Temperature on Reaction and Thermal Deformation Characteristics in a Steam Reformer (증기 개질기의 반응 및 열변형 특성에 미치는 공정가스와 버너가스 온도의 영향)

  • Han, Jun Hee;Kim, Ji Yoon;Lee, Jung Hee;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.126-132
    • /
    • 2016
  • This study numerically investigates the characteristics of chemical reactions and thermal deformation in a steam reformer. These phenomena are significantly affected by the high-temperature burner gas and the process gas conditions. Because the high temperature of the burner gas ranges from 800 to 1000 K, the reformer tubes undergo substantial thermal deformation, eventually resulting in structural failure. Thus, it is necessary to understand the characteristics of the reaction and thermal deformation under the operating conditions to evaluate the reformer tubes for sustainable, stable operation. Extensive numerical simulations were carried out using commercial CFD code (ANSYS FLUENT/MECHANICA Ver. 13.0) while considering three-dimensional turbulent flows and combined heat transfer including conduction, convection, and radiation. Structural analysis considering conjugated heat transfer between solid tubes and fluid flows was conducted using the Fluid-Solid Interaction (FSI) method. The results show that when the injection temperature of the process gas and burner gas decreased, the hydrogen production rate decreased significantly, and thermal deformation decreased by at least 15 to 20%.

Utilization of EPRI ChemWorks tools for PWR shutdown chemistry evolution modeling

  • Jinsoo Choi;Cho-Rong Kim;Yong-Sang Cho;Hyuk-chul Kwon;Kyu-Min Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3543-3548
    • /
    • 2023
  • Shutdown chemistry evolution is performed in nuclear power plants at each refueling outage (RFO) to establish safe conditions to open system and minimize inventory of corrosion products in the reactor coolant system (RCS). After hydrogen peroxide is added to RCS during shutdown chemistry evolution, corrosion products are released and are removed by filters and ion exchange resins in the chemical volume control system (CVCS). Shutdown chemistry evolution including RCS clean-up time to remove released corrosion products impacts the critical path schedule during RFOs. The estimation of clean-up time prior to RFO can provide more reliable actions for RCS clean-up operations and transients to operators during shutdown chemistry. Electric Power Research Institute (EPRI) shutdown calculator (SDC) enables to provide clean-up time by Co-58 peak activity through operational data from nuclear power plants (NPPs). In this study, we have investigated the results of EPRI SDC by shutdown chemistry data of Co-58 activity using NPP data from previous cycles and modeled the estimated clean-up time by EPRI SDC using average Co-58 activity of the NPP. We selected two RFO data from the NPP to evaluate EPRI SDC results using the purification time to reach to 1.3 mCi/cc of Co-58 after hydrogen peroxide addition. Comparing two RFO data, the similar purification time between actual and computed data by EPRI SDC, 0.92 and 1.74 h respectively, was observed with the deviation of 3.7-7.2%. As the modeling the estimated clean-up time, we calculated average Co-58 peak concentration for normal cycles after cycle 10 and applied two-sigma (2σ, 95.4%) for predicted Co-58 peak concentration as upper and lower values compared to the average data. For the verification of modeling, shutdown chemistry data for RFO 17 was used. Predicted RCS clean-up time with lower and upper values was between 21.05 and 27.58 h, and clean-up time for RFO 17 was 24.75 h, within the predicted time band. Therefore, our calculated modeling band was validated. This approach can be identified that the advantage of the modeling for clean-up time with SDC is that the primary prediction of shutdown chemistry plans can be performed more reliably during shutdown chemistry. This research can contribute to improving the efficiency and safety of shutdown chemistry evolution in nuclear power plants.

Evaluation of Efficacy and Development of Predictive Reduction Models for Escherichia coli and Staphylococcus aureus on Food Contact Surfaces as a Function of Concentration and Contact Time of Chlorine Dioxide (대장균과 황색포도상구균에 대한 이산화염소의 살균소독력 평가 및 살균예측모델 개발)

  • Yoon, So-Jeong;Park, Shin Young;Kim, Yong-Soo;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.507-512
    • /
    • 2017
  • There has been increasing concern regarding misuse of disinfectants and sanitizers such as ethanol, sodium hypochlorite, and hydrogen peroxide for food contact surfaces in the food industry. Examining the efficacy of the concentration of currently used disinfectants and sanitizers is urgently required in the Korean society. This study aimed to develop predictive reduction models for Escherichia coli and Staphylococcus aureus in suspension, as a function of $ClO_2$ (chlorine dioxide) and contact time using response surface methodology. E. coli ATCC 10536 and S. aureus ATCC 6538 (initial inoculum, 8-9 log CFU/mL) in tryptic soy broth were treated with different concentrations of $ClO_2$ (5, 20, and 35 ppm) for different contact times (1, 3, and 5 min) following a central composite design. The polynomial reduction models for $ClO_2$ on E. coli and S. aureus were developed under the clean condition. E. coli reduction by 35 ppm $ClO_2$ for 1, 3, and 5 min was 2.49, 2.70, and 3.65 log CFU/mL, respectively. Also, S. aureus reduction by 35 ppm $ClO_2$ for 1, 3, and 5 min was 4.59, 5.25, and 5.81 log CFU/mL, respectively. The predictive response polynomial models developed were $R=0.43231-0.056492^*X_1-0.097771^*X_2+9.24167E-003^*X_1^*X_2+3.06333E-003^*X_1{^2}$ ($R^2=0.98$) on E. coli and $R=1.10542-0.20896^*X_1-0.046062^*X_2+8.30000E-003^*X_1^*X_2+8.73300E-003^*X_1{^2}$ ($R^2=0.99$) on S. aureus, where R was the bacterial reduction (log CFU/mL), $X_1$ was the concentration and $X_2$ was the contact time. Our predictive reduction models should be validated in developing the optimal concentration and contact time of $ClO_2$ for inhibiting E. coli and S. aureus on food contact surfaces.