• 제목/요약/키워드: Hydrogen risk

검색결과 205건 처리시간 0.025초

HCNG 보급을 위한 안전기술 및 기준 연구

  • 방효중
    • 기술사
    • /
    • 제45권6호
    • /
    • pp.20-27
    • /
    • 2012
  • World has become interested in the development of new dean energy because of oil prices rise and global warming due to carbon dioxide emissions. This study evaluated the safety of the refueling infrastructure for hydrogen, CNG and HCNG(hydrogen blended natural gas) which recently take center stage as a clean fuel. The risk of fuel was evaluated by 3D computational fluid dynamics program for gas dispersion and explosion. Hydrogen is higher than the CNG explosion overpressure and shows rapid spread. On the other hand, CNG and 30% HCNG showed quite similar characteristics. HCNG slightly rises in risk than the CNG, but HCNG is safe compared to hydrogen.

  • PDF

수소 충전 시스템의 안전성 평가에 관한 연구 (A study on the safety assessment of Hydrogen refueling system)

  • 김태훈;오영달;이만수
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.167-173
    • /
    • 2014
  • Hydrogen energy is expanding in range for civil use together with development of pollution-free power sources recently, and it is judged that the use of hydrogen will increase more as a part of carbon dioxide reduction measures according to the Climatic Change Convention. Especially, it is thought that the securement of safety of the used dispenser will be the biggest obstacle in the use of high-pressure hydrogen because the hydrogen station is operated in a high pressure. This study found risks in the process and problems on operation by making use of HAZOP(6 kinds), a qualitative safety evaluation technique, and FMEA(5 kinds), a fault mode effect analysis, for the hydrogen charging system at a hydrogen gas station, derived 6 risk factors from HAZOP and 5 risk factors from FMEA, and prepared measures for it.

반밀폐공간에서 발생되는 차량용 수소연료탱크 폭발 실험 (An Experimental Study on the Explosion of Hydrogen Tank for Fuel-Cell Electric Vehicle in Semi-Closed Space)

  • 박진욱;유용호;김휘성
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.73-80
    • /
    • 2021
  • Recently, Korea has established a plan for the supply of hydrogen vehicles and is promoting the expansion of the supply. Risk factors for hydrogen vehicles are hydrogen leakage, jet fire, and explosion. Therefore Safety measures are necessary for this hazard. In addition, risks in semi-closed spaces such as tunnels, underground roads, and underground parking lots should be analyzed. In this study, an explosion experiment was conducted on a hydrogen tank used in a hydrogen vehicle to analyze the risk of a hydrogen vehicle explosion accident that may occur in a semi-closed space. As results, the effect on the structure and the human body was analyzed using the overpressure and impulse values for each distance generated during the explosion.

시내버스용 HCNG 고압가스 충전소의 폭발 위험성 해석 (Risk Assessment of High Pressure HCNG Refueling Station Explosion by Numerical Simulation)

  • 강승규;김영구;최슬기;권정락
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.113-113
    • /
    • 2014
  • This study has been conducted for evaluation of qualitative/quantitative risk of HCNG filling station. In case of fire explosion occurred because of hydrogen, CNG, and HCNG leaking on same conditions, maximum overpressure was measured as 30kPa for hydrogen, 3.5kPa for HCNG, and 0.4kPa for CNG. The overpressure of HCNG was measured 7.75 times higher than that of CNG, but it was only 11.7% compared with hydrogen. When the explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. As the explosion occurred with the same sized container that had 350bar for hydrogen and 250bar of CNG and HCNG, the damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

  • PDF

Type II 고압수소저장용기의 충전과 방출에 의한 권선 거동 관찰의 기계적 방법에 관한 연구 (A Study on the Mechanical Method of Observing Winding Behavior by Charging and Discharging of Type II High Pressure Hydrogen Storage Tank)

  • 김승환;한진목;이성희;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제33권2호
    • /
    • pp.158-163
    • /
    • 2022
  • The test method on the Type II high-pressure hydrogen storage tanks made of the metal wire hoop winding is a complex and high risk. Also closeup on the tank being test is difficult. In this study, we studied a mechanical test method for a high-pressure hydrogen tanks. This method must be simple, risk-free and possible to observe the change in microscopic behavior of a metal wire on a liner. As the results, it was possible to observe the microscopic behavior on the metal wire by the mechanical test method. Also, a simple and risk-free test was possible compared to the conventional test method for high pressure hydrogen tanks.

수소 전주기 시스템의 HAZOP 수행 시 위험 요인 라이브러리 적용 연구 (A Study on the Application of Hazard Libraries When Using HAZOP in Hydrogen Systems)

  • 서두현;이광원;이동민;신단비;김현기;이충현;김태훈
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.381-387
    • /
    • 2023
  • The risk assessment (safety assessment) must be performed to verify the risks during operation and installation of the hydrogen system and to ensure safe design and operation. Among them, hazard and operability study (HAZOP), a qualitative risk assessment, is most often used to discover risk factors and secure safety. However, in HAZOP performance, there is a difference in the level of evaluation results depending on the level and experience of the evaluator, and there is a high possibility that subjective results will be derived. This study aims to develop a risk factor library that can list and provide information on potential risk factors in order to solve these problems when performing HAZOP, reduce risk factors that are omitted or overlooked.

수소법에 따른 수소용품 검사시행에 대비한 기술기준 제정 (Establishment of Korea Gas Safety Standards for Hydrogen Appliance Inspection in Accordance with Hydrogen Law)

  • 정재환;김완진
    • 한국가스학회지
    • /
    • 제25권6호
    • /
    • pp.80-84
    • /
    • 2021
  • 수소법이 제정됨에 따라 수소용품 4종이 검사대상제품으로 지정되었다. 수소용품의 종류는 수전해설비, 수소추출설비, 고정형 연료전지, 이동형 연료전지이다. 수소용품 검사를 위한 안전기준 제정은 각 수소용품별 위험요소를 정의하였고 위험요소를 예방하기 위한 안전기준을 수소용품 기준에 규정하였다. 각 수소용품 별 주요 안전기준은 수전해설비는 수소품질 및 안전제어, 수소추출설비는 독성물질 배출 방지 및 일산화탄소 배출 방지, 고정형 연료전지는 배출가스 규제 및 버너 안전성능, 이동형 연료전지는 진동안전성이 안전기준에 규정하여 안전성을 강화하였다.

OVERVIEW ON HYDROGEN RISK RESEARCH AND DEVELOPMENT ACTIVITIES: METHODOLOGY AND OPEN ISSUES

  • BENTAIB, AHMED;MEYNET, NICOLAS;BLEYER, ALEXANDRE
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.26-32
    • /
    • 2015
  • During the course of a severe accident in a light water nuclear reactor, large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen ($H_2$) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed, hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard, most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that, despite the installation of PARs, it is difficult to prevent at all times and locations, the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de $S{\hat{u}}ret{\acute{e}}$ $Nucl{\acute{e}}aire$ to assess hydrogen risk in nuclear power plants, in particular French nuclear power plants, the open issues, and the ongoing R&D programs related to hydrogen distribution, mitigation, and combustion.

LPG 복합 이동식 수소충전소 안전성 분석에 관한 연구 (A Study on Safety Analysis of Stationary LPG - Mobile Hydrogen Complex Refueling Station)

  • 김필종;강승규;유명종;허윤실
    • 에너지공학
    • /
    • 제28권4호
    • /
    • pp.48-60
    • /
    • 2019
  • 정부는 2015년 파리협정 이후, 미세먼지 종합관리 대책(2017), 수소경제 활성화 로드맵(2019) 등을 통해 수소 보급을 위한 다양한 정책을 추진하고 있다. 그 일환으로 2022년까지 수소공급을 위한 충전소 310개소의 구축 목표를 발표하였다. 이를 위해 융·복합, 패키지형, 이동식 수소충전소의 도입을 위한 특례를 제정·공포하였다. 이동식 수소충전소는 여러 지역에 수소를 공급가능한 장점이 있는 반면, 설비의 이동과 집약적 설치로 인해 적정한 설치기준과 운영안전성 확보가 필요하다. 본 연구에서는 이동식 수소충전소 표준모델 설계와 정량적 위험성 평가(QRA)를 실시하여 도입 가능성을 검토하였다. QRA 결과, 개인적, 사회적 위험도는 가용한 것으로 나타났으며, 도입에 대한 실증방향과 시사점을 도출하였다.

수전해 수소충전소 부품별 유해위험요인 분석 (A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device)

  • 서두현;이광원;김태훈
    • 한국가스학회지
    • /
    • 제23권6호
    • /
    • pp.33-38
    • /
    • 2019
  • 제조식 수소충전소에서 생산되는 수소가스는 일반적으로 석탄연료의 개질 및 부생가스 등을 활용하지만 순수물을 활용한 수전해 기술의 경우 청정한 기술로 각광 받고 있다. 전기에너지를 이용하여 순수한 물로부터 수소를 생산하는 기술 중에는 향후 가격 및 성능 경쟁에서 우수한 PEM(Polymer Electrolyte Membrane electrolysis)을 이용한 개발이 주로 이루어지고 있다. 이에 본 연구에서는 국내 수소충전소 중 개발단계에 있는 PEM 수전해 수소충전소에 대해 잠재된 유해위험요소를 확인하여 안전한 수소생산 및 수소충전소의 활성화를 도모하고자 한다. 유해위험요소를 도출하기 위해서는 수전해 수소충전소의 설비 및 장치의 안전성이 우선 확보되어야하기에 FMEA(Failure Mode & Effect Analysis)를 수행함으로써 수전해 및 수소충전소의 설비에서의 유해위험요인을 분석하였다.