• Title/Summary/Keyword: Hydrogen risk

Search Result 205, Processing Time 0.025 seconds

A Study on Establishment of Similar Expousre Groups(SEGs) for Chemical and Biological Risk Factors in Farm Work (농작업시 발생하는 화학적 및 생물학적 위험요인에 대한 유사노출작업군 설정 연구)

  • Lee, Minji;Sin, Sojung;Kim, Hyocher;Heo, Jinyoung;Ahn, Minji;Kim, Kyungran;Kim, Kyungsu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.292-298
    • /
    • 2020
  • Objectives: The aim of this research is to establish Similar Exposure Groups (SEGs) for chemical and biological risk factors that occur in farm work involving 24 tasks among 15 crops. Methods: To categorize SEGs, work type, work environment, and similar tasks for each crop were considered. After confirming the chemical risk factors (pesticides, inorganic dust-total dust and PM10, ammonia, and hydrogen sulfide) and biological factors (organic dust-total dust and PM10, and endotoxins) that occur in the crops and tasks, similar crops and tasks were selected as SEGs. Results: Among chemical risk factors, pesticides was selected for the SEGs, which was categorized by open field, greenhouse, fruit, and specialty crops. For inorganic dust, open field (plowing harrowing, seedling, planting, harvest, and sorting and packing) and specialty crops (plowing harrowing, seedling, planting, and harvest) were selected as SEGs. For ammonia and hydrogen sulfide, livestock (preparation of farm, management of nursery bed, feeding, shipment and manure treatment) were selected as SEGs. For biological risk factors such as organic dust (total dust, PM10) and endotoxins, open field (manure application), greenhouse (plowing harrowing, planting, manure application, and harvest), fruit (manure application), specialty crops (manure application, making furrows, mixing mushroom media, harvest, and sorting and packing), and livestock (preparation of farm, maintaining poultry litter, feeding, shipment and manure treatment) were selected as SEGs. Conclusions: To establish similar exposure groups in agriculture, it is important that the characteristics of each hazard factor are categorized by identifying risk factors occurring by tasks.

A Study on Establishing Target Reliability Levels for Flammable Gas Transmission Pipelines (가연성가스 수송배관에 대한 목표 신뢰도 수준 설정에 관한 연구)

  • Lee, Jin-Han;Jo, Young-Do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.52-58
    • /
    • 2018
  • In reliability based design and assessment (RBDA) methodology, reliability targets are used to ensure that safety levels are met relevant limit states in the stage of design and maintenance. The target reliability for flammable gas pipelines have not been developed yet in Korea. Instead of the reliability targets, the tolerable criteria for risk measures such as societal and individual risk have been applied in pipeline risk management. This paper introduces the procedures to develop the target reliability using tolerable risk criteria for societal and individual risk which can be enforced for high pressure natural gas pipelines in quantitative risk assessment. In addition, we propose the target reliability for natural gas and hydrogen gas transmission pipelines by the procedures.

A simple and effective method for addition silicone impression disinfection

  • Azevedo, Maria Joao;Correia, Ines;Portela, Ana;Sampaio-Maia, Benedita
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.155-161
    • /
    • 2019
  • PURPOSE. Although dental impression disinfection is determinant to reduce the cross-infection risk, some studies have shown that, in real practice, the disinfection procedures vary considerably. Thus, the aim of this study was to evaluate the antimicrobial effectiveness and the impact on the dimensional stability of addition silicone' impressions of water wash and the most clinically used disinfection solutions: 3% hydrogen peroxide, commercial disinfectant MD520 (Durr) and 1% and 5.25% sodium hypochlorite. MATERIALS AND METHODS. For this investigation, dental impressions were taken on 16 volunteer dental students. The antimicrobial effectiveness of each procedure was evaluated by pour plate method. The dimensional stability was evaluated using a standardized stainless-steel model, according to ANSI/ADA nº19 specification. RESULTS. The study results showed that water wash does not alter the dimensional stability of addition silicone impressions but doesn't reduce the microbial load of the material (P>.05). On the other hand, addition silicone disinfection by immersion with 3% hydrogen peroxide, MD520 (Durr), or sodium hypochlorite at 1% and 5.25% does not alter the dimensional stability significantly but reduces > 99.9% of the microbial load of the impressions (P<.001). CONCLUSION. Addition silicone impressions should always be disinfected after water wash in order to reduce effectively the cross-infection risk. All disinfectants tested showed high antimicrobial efficiency without significant changes in three-dimensional shape of impressions. Hydrogen peroxide and sodium hypochlorite are of particular importance because are easily accessible in dental setting. The less explored hydrogen peroxide could be a valuable alternative for silicone impressions disinfection.

Possible Containment Failure Mechanisms in Severe Core Meltdown Accidents (중대 노심사고시 격납용기 손상유형에 대한 고찰)

  • Kang Yul Huh;Jong In Lee;Jin Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.53-67
    • /
    • 1985
  • The severe core meltdown accident, which is not included as a design basis accident, has high consequence and low probability of occurrence and turns out to be a major risk factor in the overall risk assessment. The physical mechanisms of containment failure in core meltdown accidents are identified as steam explosion, debris bed coolability, hydrogen burning, steam spike and concrete interaction. The state of technology review is made for each subtopic about the previous and current researches for better understanding of the phenomenon.

  • PDF

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM (유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구)

  • Chol, Seunghyun;Byonl, Sung Kwang;Kim, Yun Tae;Choi, Ha Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2022
  • As the supply of hydrogen charging stations for hydrogen supply accelerates due to the hydrogen economy revitalization policy, the risk of accidents is also increasing. Since most hydrogen explosion accidents lead to major accidents, it is very important to secure safety when using hydrogen energy. In order to utilize hydrogen energy, it is essential to secure the safety of hydrogen storage containers used for production, storage, and transportation of liquid hydrogen. In this paper, in order to evaluate the structural safety of a hydrogen-filled pressure vessel, the behavioral characteristics of gas pressure were analyzed by finite element analysis. SA-372 Grade J / Class 70 was used for the material of the pressure vessel, and a hexahedral mesh was applied in the analysis model considering only the 1/4 shape because the pressure vessel is axisymmetric. A finite element analysis was performed at the maximum pressure using a hydrogen gas pressure vessel, and the von Mises stress, deformation, and strain energy density of the vessel were observed.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

Deduction of Emergency Stop Situation Factors for Water Electrolysis Facilities (수전해 설비에 대한 비상정지상황 발생 요인 도출)

  • HYEONKI KIM;TAEHUN KIM;KWANGWON RHIE;DOOHYOUN SEO;DONGMIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.722-727
    • /
    • 2023
  • There are various types of hydrogen production methods, but among them, the alkaline water electrolysis method produces hydrogen by electrolyzing water, and unlike other methods, it can produce green hydrogen that does not emit pollutants and greenhouse gases. There are many different potential risk factors inherent in the water electrolysis process. So it is necessary to predict an emergency situation in advance and to safely manage and take countermeasures according to the emergency situation. Korea Gas Safety Corporation (KGS) CODE AH271 stipulates legal matters to secure safety, but it is not detalied. Thus it is necessary to take measures to safely control and manage it according to the situation in which an emergency stop is required. In this study, based on KGS CODE and HAZOP for alkaline water electrolysis facilities, factors that can cause emergency situations were derived and countermeasures were prepared.