• Title/Summary/Keyword: Hydrogen refueling station

Search Result 71, Processing Time 0.028 seconds

A Study on the Improvement of Selection Method of Safety Distance for Worker in Hydrogen Refueling Station (수소 충전 시설 내 근로자를 위한 안전거리 선정 방법 개선에 관한 연구)

  • Hyo-Ryeol Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.78-84
    • /
    • 2023
  • Recently, the world's countries are tightening regulations on CO2 and air pollutants emission to solve them. In addition, eco friendly vehicles is increasing to replace automobiles in internal combustion engine. The government is supporting the expansion of hydrogen refueling infrastructure according to the hydrogen economy road map. In particular, refueling station is important to secure the safety that supplies high-pressure hydrogen with a wide LFL range. This paper is on guidelines for the determination safety distances to ensure worker safety from accident as jet fire. The safety distance is set according to the procedure of the EIGA doc 075/21. For accident frequency is upper 3.5E-05 per annum, safety distance is decided via consequence analysis where the risk of harm is below individual harm exposure threshold.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

A Study on the Variation of Unit Price of Hydrogen Fuel by Difference of Fuel Measuring Method (수소 충전소 연료계량방법의 차이에서 발생하는 연료단가의 상이점에 대한 고찰)

  • LEE, TAECK HONG;KANG, BYOUNG WOO;LEE, EUN WOUNG;BAE, CHUNG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • Korea government decides to build one hundred hydrogen refueling stations (HRS) until 2020 and tries to disseminate HRS and boosts HRS market in korea. Naepo HRS in chungnam province has been operated for last one full year of 2016 and recorded 2,520 times full charge for the hydrogen fuel cell powered vehicles and total 6,016 kg hydrogen fueling for the 25 units of hydrogen fuel cell powered vehicles. Raw fuel of hydrogen from tube trailer measured by pressure, converting into weight of hydrogen and shows 19.6% surplus with final charged weight by dispenser. This result is caused measuring errors. Measured charged errors between dispenser and Mass flow meter was determined 13.13%.

A Machine Learning based Methodology for Selecting Optimal Location of Hydrogen Refueling Stations (수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론)

  • Kim, Soo Hwan;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.573-580
    • /
    • 2020
  • Hydrogen emerged as a sustainable transport energy source. To increase hydrogen utilization, hydrogen refueling stations must be available in many places. However, this requires large-scale financial investment. This paper proposed a methodology for selecting the optimal location to maximize the use of hydrogen charging stations. The location of gas stations and natural gas charging stations, which are competing energy sources, was first considered, and the expected charging demand of hydrogen cars was calculated by further reflecting data such as population, number of registered vehicles, etc. Using k-medoids clustering, one of the machine learning techniques, the optimal location of hydrogen charging stations to meet demand was calculated. The applicability of the proposed method was illustrated in a numerical case of Seoul. Data-based methods, such as this methodology, could contribute to constructing efficient hydrogen economic systems by increasing the speed of hydrogen distribution in the future.

Study on the Optimum Capacity Analysis for Hydrogen Fueling Station in Korea (국내 수소충전소의 적정 용량 분석)

  • HAN, JA-RYOUNG;PARK, JINMO;LEE, YOUNG CHUL;KIM, SANG MIN;JEON, SO HYUN;KIM, HYOUNG SIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.649-656
    • /
    • 2017
  • At present, hydrogen is emerging as a future energy source based on environment-friendly aspect, creation of new industry, and enhancement of domestic energy security. In accordance with it, the world's leading automobile companies are focusing on the development and commercialization of hydrogen electric vehicle technology, and each country is strengthening its hydrogen fueling station deployment strategy for its own country. Furthermore, the supply of hydrogen fueling stations is actively promoting under national support. More than 500 hydrogen fueling stations are being constructed, operated and planned around the world. The introduction of hydrogen energy is also progressing in Korea, by announcing road-map to supply hydrogen electric vehicles and hydrogen fueling stations by year. However, there is insufficient discussion on the capacity of hydrogen fueling station in Korea. Therefore, this study suggests the optimum capacity of hydrogen fuelling station for domestic hydrogen economy.

A Study on Safety Improvement for Packaged Hydrogen Refueling Station by Risk Assessment (위험성 평가를 통한 패키지형 수소충전소 안전성 향상에 관한 연구)

  • KANG, SEUNGKYU;HUH, YUNSIL;MOON, JONGSAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.635-641
    • /
    • 2017
  • In this study, the components of packaged hydrogen filling station were analyzed and risk factors were examined. Risk scenarios were constructed and quantitative risk assessments were conducted through a general risk assessment program (phast/safeti 7.2). Through the risk assessment, the range of damage according to accident scenarios and the ranking that affects the damage according to the risk factors are listed, and scope of damage and countermeasures for risk reduction are provided. The quantitative risk assessment result of the packaged hydrogen filling station through this task will be used as the basic data for improving the safety of the packaged filling system and preparing safety standards.

Plan to Promote the Supply of Hydrogen City Buses in Busan (부산시 수소시내버스 보급 활성화 방안 연구)

  • LEE, WONGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.309-317
    • /
    • 2022
  • There are 2,517 buses on 143 routes in Busan. One company is operating 36 hydrogen city buses (1.4%) and two hydrogen charging stations. By 2030, the number of hydrogen city buses will be increased to 500 and 40 hydrogen charging stations. In the survey of city bus companies, 61.5% of respondents answered 'not reviewing (at all)' and 23.0% of respondents '(actively) reviewing hydrogen buses'. And as for the level of help that hydrogen city buses give to bus companies, 23.5% answered 'helpful'. In order to promote the introduction of hydrogen city buses, first, it is necessary to stipulate support for hydrogen bus purchase cost and hydrogen charging station construction cost in related ordinances so that bus companies do not increase their burden of purchasing hydrogen buses in the future. Second, identify the number of new city buses introduced, convert about 50% to hydrogen city buses by the mid-term, and build 50% of the chargers in public garages with hydrogen chargers. Third, expand hydrogen refueling stations in city bus garages.

A Study on the Quantitative Risk Assessment of Hydrogen-LPG Combined Refueling Station (수소-LPG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung Kyu
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a quantitative risk assessment was carried out for a hydrogen complex station. The complex fueling station to be evaluated was hydrogen-LPG, and the components of each station were analyzed and the risk was evaluated. The final risk is assessed by individual and societal risks, taking into account the impact of damage and the frequency of accidents. As a result of individual risk calculation for the hydrogen-LPG fueling station that is the subject of this study, the hydrogen-LPG type fueling station does not show the unacceptable hazardous area (> 1 × 10E-3) proposed by HSE. The level of individual risk for both the public and the worker is within acceptable limits. In societal risk assessment, the model to be interpreted shows the distribution of risks in an acceptable range(ALARP, As Low As Reasonably Practicable). To ensure improved safety, we recommend regular inspections and checks for high-risk hydrogen reservoirs, dispensers, tube trailer leaks, and LPG vapor recovery lines.

Hydrogen Industry Cycle Infrastructure Safety Analysis (수소산업 전주기 인프라시설 안전성 분석)

  • WOOIL PARK;SEULKI CHOI;INWOO LEE;SEUNGKYU KANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.795-802
    • /
    • 2022
  • Korea is showing its appearance as a leading country in the hydrogen economy by establishing policies for revitalizing the hydrogen economy and enacting the 「Hydrogen Economy Promotion and Hydrogen Safety Management Act」 for the first time in the world. In addition, domestic hydrogen facilities are using hydrogen energy safely through world-class safety management compared to overseas advanced countries. However, in order to enhance the safety of the rapidly diversifying hydrogen industry and rapid technology development, such as the introduction of liquefied hydrogen, some institutional improvements are needed. In this regard, this paper intends to analyze the results of safety inspections on 13 representative facilities and prepare safety improvement plans to establish preemptive safety measures.