• Title/Summary/Keyword: Hydrogen production efficiency

검색결과 252건 처리시간 0.027초

원자력 이용 고체산화물 고온전기분해 수소 및 합성가스 생산시스템의 열역학적 효율 분석 연구 (A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant)

  • 윤덕주;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.416-423
    • /
    • 2009
  • High-temperature steam electrolysis (HTSE) using solid oxide cell is a challenging method for highly efficient large-scale hydrogen production as a reversible process of solid oxide fuel cell (SOFC). The overall efficiency of the HTSE hydrogen and synthesis gas production system was analyzed thermo-electrochemically. A thermo-electrochemical model for the hydrogen and synthesis gas production system with solid oxide electrolysis cell (SOEC) and very high temperature gas-cooled reactor (VHTR) was established. Sensitivity analyses with regard to the system were performed to investigate the quantitative effects of key parameters on the overall efficiency of the production system. The overall efficiency with SOEC and VHTR was expected to reach a maximum of 58% for the hydrogen production system and to 62% for synthesis gas production system by improving electrical efficiency, steam utilization rate, waste heat recovery rate, electrolysis efficiency, and thermal efficiency. Therefore, overall efficiency of the synthesis production system has higher efficiency than that of the hydrogen production system.

국내 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Photoelectrochemical Hydrogen Production)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.64-71
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic immersing type photoelectrochemical hydrogen production. We also make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the immersing type photoelectrochemical system was estimated as 8,264,324 won/$kgH_2$. It is expected that the production cost by photoelectrochemical hydrogen production can be reduced to 26,961 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 10% of the current level. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

국내 광생물학적 수소생산의 경제성 평가 (Economic Evaluation of Domestic Photobiological Hydrogen Production)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.322-330
    • /
    • 2008
  • This paper deals with an economic evaluation of domestic photobiological hydrogen production. We evaluate the economic feasibility of domestic photobiological hydrogen production utilizing green algae and cyanobacteria. In addition, we make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the price of a photo-bioreactor and the value of solar to hydrogen efficiency. The estimated hydrogen production price of the two-step indirect biophotolysis was 12,099won/kg$H_2$. It is expected that the hydrogen production price by the two-step indirect biophotolysis can be reduced to 2,143won/kg$H_2$ if the solar to hydrogen efficiency is increased to 10% and the price of a photo-bioreactor is decreased to $25/$m^2$. The two-step indirect biophotolysis is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen efficiency and to reduce the prices of the photo-bioreactor and system facilities.

수소 연료생산의 효율 향상을 위한 초음파 응용에 관한 연구(LSV에 의한 과전압 저감 중심으로) (A Study on the Ultrasonic Application for the Efficiency Elevation of Hydrogen Fuel Production (On the Decrease of Overpotential by LSV))

  • 주은선;박영철;송민근;손승우
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.187-194
    • /
    • 2003
  • The production of hydrogen fuel depends basically on the water electrolysis. The study on the decrease of overpotential which activates the hydrogen production is the core to elevate the hydrogen production efficiency on principle. Characteristics on the overpotential decrease are observed through the micro reaction by ultrasonic in electrolytic cell. For the above, the electrochemical analyzer, i.e., BAS is applied, Experiments with ultrasonic forcing into 4 kinds of solution such as city water, city water plus nitrogen. distilled water, and distilled water plus nitrogen are carried out. And concentrations of KOH are 0%, 10%, 20% and 30%. The basic characteristics of the overpotential decrease are obtained through the analysis by LSV technique in sweep technique. In results, it is clarified that the ultrasonic influences the decrease of overpotential to obtain the efficiency elevation of hydrogen fuel production.

수소 연료 생산의 효율향상을 위한 초음파 응용에 관한 연구 - 압력센서 계기에 의한 - (A Study on the Utrasonic Application for the Efficiency Elevation of the Hydrogen Fuel Production - By the Pressure Sensor Gage -)

  • 송민근;손승우;주은선
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1229-1237
    • /
    • 2003
  • The production of hydrogen fuel depends basically on the water electrolysis. The ultrasonic effects the decrease of the overpotential in a water electrolysis. A study on the overpotential which activates the hydrogen production is the core to elevate the hydrogen production efficiency on the principle. A pressure sensor system by a new idea is developed and applied. Solutions are 4 kinds of KOH concentration such as 0%, 10%, 20%, and 30%. Two frequency bands of the ultrasonic transducer are 28kHz and 2MHz. The directions of ultrasonic forcing are the vertical direction and the horizontal direction. The temperatures are two states, i.e., no constant and constant. Experiments are carried out sequentially in order in three cases of no ultrasonic forcing, ultrasonic forcing, and ultrasonic discontinution. In results, it is clarified that the ultrasonic effects the decrease of overpotential to elevate the efficiency of hydrogen production.

천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구 (Study on the development of small-scale hydrogen production unit using steam reforming of natural gas)

  • 서동주;주국택;정운호;박상호;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

연속반응공정을 이용한 유기성자원으로부터 수소생산을 위한 최적인자도출에 관한 연구 (Deduction of Optimum Factors for Hydrogen Production from Organic Resources using a Continuous Reaction Process)

  • 김충곤;신현곤
    • 유기물자원화
    • /
    • 제19권2호
    • /
    • pp.22-27
    • /
    • 2011
  • 본 연구에서는 음식물류폐기물폐수와 양돈폐수를 특별히 전처리 하지 않고 3:7의 비율로 혼합하여 연속반응공정을 이용한 수소생산의 최적 인자를 도출하기 위해 연구를 수행하였다. 본 연구결과 수소발생량은 pH 5.5의 조건에서 가장 많이 발생하였으며, 이를 통해 음식물류폐기물과 양돈폐수의 혼합시의 수소생산의 최적 pH는 5.5 임을 확인하였다. HRT에 따른 수소발생량은 3일보다 4일의 경우에 높은 수소발생량을 보였으며, 이는 HRT값의 변화에 따라 수소발생미생물의 활성에 크게 관여하는 것으로 HRT역시 수소발생미생물에 중요한 인자로 작용한다고 판단된다. 유기물의 제거율은 운전 6일째에 최대 TS 52%, VS 71%, TSS 83%, VSS 89%의 제거율을 기록하였으며, 수소생산 공정을 통하여도 유기물의 제거가 가능함을 확인하였다.

고온 수전해에 의한 수소 제조 기술 (Hydrogen Production Technology using High Temperature Electrolysis)

  • 홍현선;추수태;윤용승
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.335-347
    • /
    • 2003
  • High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가 (Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production)

  • 최미화;최진혁;이태희;유영성;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.