• 제목/요약/키워드: Hydrogen production

검색결과 1,753건 처리시간 0.052초

특허분석에 의한 수전해 수소제조 기술동향 (Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis)

  • 황갑진;강경석;한혜정;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

수소 전주기 경제성 분석 프로그램 개발 (Economic Analysis Program Development for Assessment of Hydrogen Production, Storage/Delivery, and Utilization Technologies)

  • 김수현;유영돈;박혜민
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.607-615
    • /
    • 2022
  • In this study, economic analysis program was developed for economic evaluation of hydrogen production, storage/delivery, and utilization technologies as well as overseas import of hydrogen. Economic analysis program can be used for the estimation of the levelized cost of hydrogen for hydrogen supply chain technologies. This program include five hydrogen production technology on steam methane reforming and water electrolysis, two hydrogen storage technologies (high compressed gas and liquid hydrogen storage), three hydrogen delivery technologies (compressed gas delivery using tube trailer, liquid hydrogen, and pipeline transportation) and six hydrogen utilization technologies on hydrogen refueling station and stationary fuel cell system. In the case of overseas import hydrogen, it was considered to be imported from five countries (Austraila, Chile, India, Morocco, and UAE), and the transportation methods was based on liquid hydrogen, ammonia, and liquid organic hydrogen carrier. Economic analysis program that was developed in this study can be expected to utilize for planning a detailed implementation methods and hydrogen supply strategies for the hydrogen economy road map of government.

황결핍 된 Chlamydomonas Reinhardtii 배양액에서 수소생산을 위한 제한 인자들의 영향 (Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii)

  • 김준표;심상준
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.286-292
    • /
    • 2006
  • Chlamydomonas reinhardtii is a green algae that can use light energy and water to produce hydrogen under anaerobic condition. This work reports the effect of limiting factors on hydrogen production in sulfur deprived anaerobic C. reinhardtii culture. In order to confirm the relationship between hydrogen production and limiting factors such as residual PSII activity and endogenic substrate degradation, the increase in chlorophyll concentration and the decrease in starch concentration was investigated during sulfur deprivation. The overall hydrogen production increased depending on cell density in range of $0.4{\sim}0.96\;g$ DCW/l. At this time, the increase in chlorophyll concentration during 24 h after sulfur deprivation increased in proportion to hydrogen production, however, the decrease in starch concentration was not proportional to that. Therefore, hydrogen production under sulfur deprivation using green alga was closely associated with the residual PSII activity than the endogenic substrate degradation.

Polyvinylalcohol에 고정한 시금치 엽록체와 백금 촉매를 이용한 광수소 발생 (Photoproduction of Hydrogen in Polyvinylalcohol-Iimmobilized Spinach Chloroplsats with Platinum Catalysts)

  • 박인호
    • Journal of Plant Biology
    • /
    • 제36권4호
    • /
    • pp.313-319
    • /
    • 1993
  • Photoproduction of hydrogen by free and polyvinylalcohol (PVA)-immobilized spinach chloroplasts was investigated. Immobilization of chloroplast with PVA increased the functional stability of the chloroplast during storage. PVA-immobilized chloroplasts preserved photosynthetic electron transport activity much better than free chloroplasts. The hydrogen production of free chloroplast decreased to 17% of initial activity after storage of six days. The hydrogen production of the PVA-immobilized chloroplast, however, showed 44% of initial activity after storage of 15 days. The maximal rate of hydrogen production was accomplished at 2$^{\circ}C$ under the light intensity above 116 $\mu$E.m-2.s-1. The amount of hydrogen produced was proportional to the chlorophyll concentration. The hydrogen production was inhibited by DCMU treatment, indicating hydrogen production is dependent on photosynthetic electron transport. These results suggest that PVA is a good candidate for the immobilization matrix of chloroplasts for the photoproduction of hydrogen.

  • PDF

석탄을 원료로 한 수소 제조 공정 (Hydrogen Production Technologies from Coal)

  • 김종원;심규성
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.193-206
    • /
    • 1996
  • The simplest and lightest element-hydrogen is an alternative fuel which provides a clean and renewable energy source. Hydrogen can be used to power gas-type appliance and modified automobiles with water vapor as the only byproduct of combustion. Historically, production of hydrogen from coal was one of the mass production technology of hydrogen. In this paper, the status of hydrogen production process from coal was investigated to review the current situation of hydrogen production and utilization.

  • PDF

SWNTs-catalyzed solar hydrogen production

  • Kim, Young Kwang;Khan, Gulzar;Jeong, Hye Won;Park, Hyunwoong
    • Rapid Communication in Photoscience
    • /
    • 제3권3호
    • /
    • pp.56-58
    • /
    • 2014
  • Single-walled carbon nanotubes (SWNTs) catalyzed hydrogen production from water containing various electron donors under visible light (${\lambda}$ > 420 nm). As-received SWNTs were effective for hydrogen production, yet the effect vanished when they underwent surface chemical treatments. Upon coupling with CdSe particles, however, the surface treated SWNTs were far superior to non-treated SWNTs by a factor of ~30 for hydrogen production.

초고온가스로를 이용한 원자력수소생산 기술개발 (Nuclear Hydrogen Production Technology Development Using Very High Temperature Reactor)

  • 김용완;김응선;이기영;김민환
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.299-305
    • /
    • 2015
  • 미래에너지의 해법으로 원자력에너지를 이용한 물분해 수소생산시스템의 핵심기술을 개발하였다. 안전성을 보장할 수 있는 제4세대 원자로인 초고온가스로의 고열을 이용하여 황요오드 열화학적인 방법으로 물을 분해하여 수소를 생산하는 기술이다. 원자력수소생산 핵심기술은 초고온에서의 열을 공급하는 것을 모사하는 초고온 실험기술, 초고온가스로의 안전성을 모사하는 연구, 초고온가스로의 노심과 안전성을 해석할 수 있는 도구의 개발, 초고온가스로에 사용하는 연료제조기술, 물을 분해하여 열화학적인 방법으로 수소를 생산하는 기술로 구성된다. 원자력수소생산에 필요한 핵심기술을 개발하고 실험실 규모로 입증하였으며, 대규모 실용화를 위해서 선결되어할 미완성 기술을 제시하였다. 본 기술은 제4세대 원자로개발 국제공동연구로 수행한 기술로서 향후 미래의 원자로 기술이다.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

수소제조 기술특성 및 특허분석에 의한 기술동향 (Technology Characteristics of Hydrogen Production and Its Technology Trend by the Patent Analysis)

  • 최재호;이영우;강경석;최상진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.481-494
    • /
    • 2007
  • Hydrogen is clean and renewable and is recognized as a very promising energy to solve both depletion of petroleum resource and environmental problems caused by use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, characteristics of hydrogen production technologies were analyzed from the literature survey. Also, The technology trend of hydrogen production was scrutinized based on patent analysis. In patent analysis the search range was limited to the open patents issued from 1996 to 2005. Patents were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend of hydrogen production was discussed by classifying each patent based on the publishing year, country, and company, and the type of production technology.

Dark Hydrogen Production by a Green Microalga, Chlamydomonas reinhardtii UTEX 90

  • SIM SANG JUN;GONG GYEONG TAEK;KIM MI SUN;PARK TAl HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1159-1163
    • /
    • 2005
  • The production of hydrogen by Chlamydomonas reinhardtii UTEX 90, a marine green alga, was performed under dark fermentation. The effects of initial nitrogen and phosphorus concentration on the cell growth and the production of hydrogen and organic substances were investigated. In the growth stage, the maximum dry cell weight (DCW) was 3 g/l when the initial ammonium concentration was 15 mM. In the dark fermentation, the maximum hydrogen production was $3.5\;{\mu}mol/\;mg$ DCW when the initial nitrogen concentration was 7.5 mM. The nitrogen concentration had a greater effect on organic compound and hydrogen production than the phosphorus concentration during the dark fermentation. An investigation of the duration of dark fermentation showed that, at least until three days, dark fermentation should be prolonged for maximum hydrogen production.