• 제목/요약/키워드: Hydrogen peroxide ($H_2O_2$)

검색결과 936건 처리시간 0.028초

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제36권5호
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.

Neuroprotective Effects of Methanol Extracts of Jeju Native Plants on Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Human Neuroblastoma Cells

  • Kong, Pil-Jae;Kim, Yu-Mi;Lee, Hee-Jae;Kim, Sung-Soo;Yoo, Eun-Sook;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.171-174
    • /
    • 2007
  • Neuronal death is a common characteristic hallmark of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases, whereas oriental medicinal plants have to possess valuable therapeutic potentials to treat neurodegenerative diseases. In the present study, in an attempt to provide neuroprotective agents from natural plants, 80% methanol extracts of a wide range of medicinal plants, which are native to Jeju Island in Korea, were prepared and their protective effects on hydrogen peroxide-induced apoptotic cell death were examined. Among those tested, extracts from Smilax china and Saururus chinesis significantly decreased hydrogen peroxide-induced apoptotic cell death. The extracts attenuated hydrogen peroxide($H_2O_2$)-induced caspase-3 activation in a dose-dependent manner. Further, plant extracts restored $H_2O_2$-induced depletion of intracellular glutathione, a major endogenous antioxidant. The data suggest that Jeju native medicinal plants could potentially be used as therapeutic agents for treating or preventing neurodegenerative diseases in which oxidative stress is implicated.

Effects of Dancheonhwan on Hydrogen Peroxide-induced Apoptosis of H9c2 Cardiomyoblasts (단천환이 Hydrogen Peroxide에 의한 심근세포 독성에 미치는 영향)

  • Na Yeong Hun;Bak Sang Beom;Jeong Seung Won;Yun Jong Min;Lee In;Moon Byung Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제18권3호
    • /
    • pp.774-782
    • /
    • 2004
  • The water extract of Dancheonhwan (DCH) has been used to treat ischemic brain and heart damage in oriental medicine. However, little is known about the mechanism by which the water extract of DCH rescues cells from ischemic damage. Therefore, this study was designed to investigate the protective mechanisms of DCH on the H₂O₂-induced toxicity in H9c2 cardiomyoblast cells. Treatment of H₂O₂ markedly decreased the viability of H9c2 cardiomyoblast in a dose-dependent and time-dependent manner. The nature of H₂O₂-induced toxicity of H9c2 cells resulted from apoptotic death confirmed with genomic DNA fragmentation. DCH increased the viability of H₂O₂-treated H9c2 cells by about 23%, and partially suppressed the genomic DNA fragmentation and PARP cleavage. H₂O₂ also activated caspase-3 protease and -9 protease, but not both caspase-6 protease and -8 protease. H₂O₂ induced the mitochondria dysfunction, including mitochondria membrane permeability transition (MPT) and cytosolic release of cytochrome c from mitochondria, which was prevented in part by pretreatment of DCH. N-acetylcystein (NAC), a free-radical scavenger, alone increased the viability of H₂O₂-treated H9c2 cells in a dose-dependent manner. Furthermore, the combination of NAC with DCH significantly increased the viability of the H₂O₂-treated H9c2 cells in a dose-dependent manner. These data indicate that DCH has the protective effect on ROS-induced apoptosis of cadiomyoblast H9c2 cells.

Development of 100N class $H_{2}O_2$ Mono-propellant Rocket Engine (100N급 $H_{2}O_2$ 단일 추진제 로켓 엔진의 개발)

  • Lee Su-Lim;Park Joo-Hyuk;Lee Choog-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.159-167
    • /
    • 2005
  • Considering the increase of interest in $H_{2}O_2$ as a rocket propellant, a test facility and a rocket engine have been developed to research in areas of $H_{2}O_2$ mono-propellant propulsion. A detailed design-study of a $H_{2}O_2$ mono-propellant rocket engine of 100-N thrust is presented. Several firings attempted in early stage had some problems with misfire and chamber pressure decrease. Low environmental temperature and impurities included in hydrogen peroxide were considered to be the reasons. Addressing these points resulted in successful firing of the rocket engine and obtained thrust about $100\sim107-N.$

  • PDF

A Basic Research for Development of $H_2O_2$ Mono-propellant Rocket Engine ($H_2O_2$ 단일 추진제 로켓 엔진 개발에 대한 기초연구)

  • Lee Su-Lim;Park Joo-Hyuk;Lee Choog-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.110-117
    • /
    • 2006
  • Considering the increase of interest in $H_2O_2$ as a rocket propellant, a test facility and a rocket engine have been developed to research in areas of $H_2O_2$ mono-propellant propulsion. A detailed design-study of a $H_2O_2$ mono-propellant rocket engine of 100-N thrust is presented. Several firings attempted in early stage had some problems with misfire and chamber pressure decrease. Low environmental temperature and impurities included in hydrogen peroxide were considered to be the reasons. Addressing these points resulted in successful firing of the rocket engine and obtained thrust about $100\sim107-N$.

  • PDF

Analysis of Gaseous Hydrogen Peroxide Concentrations using Fluorometer (Fluorometer를 이용한 대기중 $H_2O_2$의 분석)

  • 강충민;최민규;임종억;김연하;김희강
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 한국대기환경학회 2000년도 춘계학술대회 논문집
    • /
    • pp.110-111
    • /
    • 2000
  • 대기중 가스상 $H_2O_2$(Hydrogen Peroxide)는 액상 화학반응과 기상 라디칼반응사이에 연결고리의 역할을 할 뿐만 아니라, 대기중의 $SO_2$$H_2SO_4$로 산화시키는 산화제로서 구름, 안개, 이슬 및 빗물의 산화에 중요한 역할을 담당한다. 또한 가스상 $H_2O_2$는 연쇄종결자와 $HO_2$.(hydroperoxyl radical)농도의 지표로서 광화학 스모그에 있어 중요한 화학종이기도 하다. $H_2O_2$농도의 증가는 결국 대기의 산화율 및 속도를 증가시키고 대류권내의 액상중에서 $H_2SO_4$ 생성을 가속화시킨다는 것은 이미 잘 알려져 있는 사실이다. (중략)

  • PDF

TASK-1 Channel Promotes Hydrogen Peroxide Induced Apoptosis

  • Yun, Ji-Hyun;Kim, Seung-Tae;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권1호
    • /
    • pp.63-68
    • /
    • 2005
  • Hydrogen peroxide ($H_2O_2$) causes oxidative stress and is considered as an inducer of cell death in various tissues. Two-pore domain $K^+$ ($K_{2p}$) channels may mediate $K^+$ efflux during apoptotic volume decreases (AVD) in zygotes and in mouse embryos. In the present study, we sought to elucidate linkage between $K_{2p}$ channels and cell death by $H_2O_2$. Thus $K_{2p}$ channels (TASK-1, TASK-3, TREK-1, TREK-2) were stably transfected in HEK-293 cells, and cytotoxicity assay was preformed using cell counting kit-8 (CCK-8). Cell survival rates were calculated using the cytotoxicity assay data and dose-response curve was fitted to the $H_2O_2$ concentration. Ionic currents were recorded in cell-attached mode. The bath solution was the normal Ringer solution and the pipette solution was high $K^+$ solution. In HEK-293 cells expressing TREK-1, TREK-2, TASK-3, $H_2O_2$ induced cell death did not change in comparison to non-transfected HEK-293. In HEK-293 cells expressing TASK-1, however, dose-response curve was significantly shifted to the left. It means that $H_2O_2$ induced cell death was increased. In cell attached-mode recording, application of $H_2O_2$ (300μM) increased activity of all $K_{2p}$ channels. However, a low concentration of $H_2O_2$ ($50{\mu}M$) increased only TASK-1 channel activity. These results indicate that TASK-1 might participate in $K^+$ efflux by $H_2O_2$ at low concentration, thereby inducing AVD.

Antioxidative Effect and Melanogenesis of Nelumbo nucifera Stamen Extract on Cultured Human Skin Melanoma Cells Injured by Hydrogen Peroxide (연꽃수술추출물이 과산화수소로 손상된 배양 인체피부흑색종세포에 대한 항산화효과 및 멜라닌화에 미치는 영향)

  • Kim, Myoung-Seoup;Park, Yun-Jum;Sohn, Young-Woo
    • Korean Journal of Plant Resources
    • /
    • 제23권2호
    • /
    • pp.145-150
    • /
    • 2010
  • To examine the antioxidative effect and melanogenesis of Nelumbo nucifera stamen (NNS) extract on hydrogen peroxide $H_2O_2$ induced cytotoxicity in cultured human skin melanoma cells (SK-MEL-3), cell adhesion activity (CAA), tyrosinase inhibitory activity and total amount of melanin synthesis were measured by colorimetric assay. In this study, $H_2O_2$ significantly decreased CAA, and $CAA_{50}$ value of $H_2O_2$ was determined at 30 uM. In the antioxidative effect, NNS extract increased cell adhesion activity which was decreased by $H_2O_2$ induced cytotoxicity, and also, tyrosinase activity and total amount of melanin were decreased by NNS extract. These results suggested that $H_2O_2$ was highly toxic on cultured human skin melanoma cells and NNS extract showed the antioxidative and inhibitory effect of melanogenesis by the increased CAA, and the decresed tyrosinase activity and total amount of melanin synthesis.

The Effects of Hydrogen Peroxide Pretreatment on Rice Straw Fermentation for Feed (볏짚 발효사료 제조시 과산화수소 전처리 효과)

  • Choi, Yoon-Hee;Lee, Sang-Bok;Kim, Myeong-Sook;Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • 제37권5호
    • /
    • pp.326-333
    • /
    • 1994
  • Pleurotus florida with high cellulase activity as well as lignin degradability was selected out among strains for fermentation of the rice straw to improve the nutritive value. When the rice straw was fermented by P. florida, the contents of hemicellulose, cellulose and lignin were decreased to 22.5%, 11.4% and 28.1%, respectively, whereas the contents of rice straw fermented after pretreatment with $H_2O_2$ or alkaline hydrogen peroxide were decreased much in the lower concentration. The content of T-N (total-nitrogen) and crude fat was increased with the longer fermentation period. The amino acid content of rice straw fermented by P. florida in 30 days was increased to 28.9% and 35.1% as the rice straw was fermented after pretreatment without and with 4% $H_2O_2$, respectively. The crystalline intensity of rice straw was decreased by pretreatment with 4% $H_2O_2$ and fermentation by P. florida. However, the crystall intensity was increased by treatment with alkaline hydrogen peroxide and the more when the straw was washed after the treatment. When the rice straw was fermented by P. florida for 30 days, the in vitro organic matter digestibility was increased up to 6% of $H_2O_2$ pretreatment.

  • PDF

Electrocatalytic Reduction of Dioxygen by Cobaltporphyrin in Aqueous Solutions

  • 전승원;이효경;김송미
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권8호
    • /
    • pp.825-830
    • /
    • 1998
  • The electrocatalytic reduction of dioxygen by Co(TTFP)(Y)2 {Y=H2O or HO-} is investigated by cyclic voltammetry, spectroelectrochemistry, hydrodynamic voltammetry at a glassy carbon electrode in dioxygen-saturated aqueous solutions. Electrocatalytic reduction of dioxygen by CoⅡ(TTFP)(Y)2 establishes a pathway of 2e- reduction to form hydrogen peroxide, and then the generated hydrogen peroxide is reduced to water by CoⅠ(TTFP)(Y)2 at more negative potential. CoⅡ(TTFP)(Y)2 may bind dioxygen to produce the adduct complex [CoⅡ-O2 or CoⅢ-O2] which exhibits a Soret band at 411 nm and Q band at 531 nm.