• Title/Summary/Keyword: Hydrogen permeability

Search Result 142, Processing Time 0.023 seconds

Separation of Hydrogen-Nitrogen Gas Mixture by PTMSP-Silica-PEI Composite Membranes

  • Lee, Hyun-Kyung;Kang, Tae-Beom
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.144-147
    • /
    • 2004
  • Organosilicon polymers have long paid attention as functional polymers [1,2]. Among others, poly- (1-trimethylsilyl-1-propyne) [PTMSP] is a polymer, which forms a gas separating membrane with extraordinary high gas permeability. In particular, composite membranes that constituted two different matrices (inorganic and organic) have been recently developed in order to improve the permeation characteristics.(omitted)

  • PDF

Degradation of Polymer Electrolyte Membrane under Low Current/Low Humidity Conditions (저전류/저가습 조건에서 고분자전해질 막 열화)

  • Kim, Tae-Hee;Lee, Jung-Hun;Lee, Ho;Lim, Tae-Won;Park, Kwon-Pil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • During PEMFC operation, low current and low humidity conditions accelerate the degradation of perfluorosulfonic acid membrane. But, there have been no studies that clearly explain why these conditions accelerate the membrane degradation. In this study, the hydrogen permeability through the membrane, I-V polarization of MEA, fluoride emission rate(FER) in effluent water were measured during cell operation under low current densities and low relative humidity(RH). The experimental results were evaluated with oxygen radical mechanism the most commonly known for membrane degradation. It seems that low RH of anode is a good condition for $H{\cdot}$ radical formation on the Pt catalyst and the low current condition accelerates the $H{\cdot}$ to form $HO_2{\cdot}$ radical attacking the polymer membrane.

Improving Gas Barrier Property of Polymer Based Nanocomposites Using Layer by Layer Deposition Method for Hydrogen Tank Liner

  • Lee, Suyeon;Han, Hye Seong;Seong, Dong Gi
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2022
  • Owing to advantages of polymeric materials for hydrogen tank liner like light-weight property and high specific strength, polymer based composites have gained much attention. Despite of many benefits, polymeric materials for fuel cell tank cause problems which is critical to applications as low gas barrier property, and poor processability when adding fillers. For these reasons, improving gas barrier property of polymer composites is required to study for expanding application fields. This work presents impermeable polymer nanocomposites by introducing thin barrier coating using layer by layer (LBL) deposition method. Also, bi-layered and quad-layered nanocomposites were fabricated and compared for identifying relationship between deposition step and gas barrier property. Reduction in gas permeability was observed without interrupting mechanical property and processability. It is discussed that proper coating conditions were suggested when different coating materials and deposition steps were applied. We investigated morphology, gas barrier property and mechanical properties of fabricated nanocomposites by FE-SEM, Oxygen permeation analyzer, UTM, respectively. In addition, we revealed the mechanism of barrier performance of LBL coating using materials which have high aspect ratio.

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs) (마이크로 원통형 SOFC 제작 및 특성평가)

  • Kim, Hwan;Kim, Wan-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.749-753
    • /
    • 2012
  • In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of $1095mW/cm^2$ on the condition of $800^{\circ}C$. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single cell with reaction temperature.

Effects of Imidisation for Poly(Amic Acid) Films on Gas Transport (Polyamic Acid막의 Imide화가 산소, 질소투과에 미치는 영향)

  • 김남일;홍치선;조한석;남세종
    • Membrane Journal
    • /
    • v.3 no.2
    • /
    • pp.60-69
    • /
    • 1993
  • The polyamic acid (PAA) based on 3,3', 4,4'-benzophenonetetracarboxylic dianhydride(BTDA)-3,3', 4,4'-dipheylsulfonetetracarboxylic dianhydride(BAPP), 2,2-bis(4-[4-aminophenoxyl]phenyl) propane(DSDA)-3,3', 4,4'-dipheylsulfonetetracarboxylic dianhydride(BAPP), and 3,3',4,4'-benzophenonetetracarboxylic dianhydride(BTDA)-4,4'-oxydianiline(4,4'-ODA) was synthesised. The casted PAA films were partially imidised and the permeation properties of these PAA films for $O_2$ and $N_2$ were investigated according to the degree of imidisation. When the degree of imidisation was increased by curing, the permeabilities of the PAA films were increased for a while and then decreased. These results show that the increase of gas permeation by the disappearence of strong hydrogen bond is larger than the decrease of gas permeation by the dense effect. The decrease of hydrogen bond between molecular chains of PAA suddenly increases the vibration of the chain to make holes but the compaction in polymer chain gradually decreases the gas permeation. The largest values of permeability of BTDA-BAPP, DSDA-BAPP and BTDA-4,4'-ODA film was 8.3, 0.3 and 0.8 barrer respectively, and the imidisation content corresponding to the values of the largest permeability was 37, 47 and 55% each. But the permselctivities of the PAA films were not changed by the variation of the degree of imidisation.

  • PDF

Characterization of SPAES Composite Membrane Containing Variously Funtionallized MMT for Direct Methanol Fuel Cell Application (다양한 관능기를 포함한 MMT/SPAES 복합막의 직접 메탄올 연료전지용 적용을 위한 특성평가)

  • Kim, Deuk-Ju;Hwang, Hae-Young;Kim, Se-Jong;Hong, Young-Taik;Kim, Hyoung-Juhn;Leem, Tae-Hoon;Nam, Sang-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.42-50
    • /
    • 2011
  • The Montmorillonite (MMT) in the polymer matrix is expected to reduce methanol permeability due to the tortous path formed by dispersed silicate layers. However, the polymer composite membranes containing non-proton conducting inorganic particle tend to show low proton conductivity. To solve this problem, we used an ion exchange method to prepare functionalized MMT with various silane coupling agents. The modified MMT was randomly dispersed in sulfonated poly (arylene ether sulfone) (SPAES) matrix to prepare SPAES/modified MMT composite membranes. The performances of hybrid membranes for DMFCs application were investigated. The SPAES/modified composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane. However, the methanol permeability of the SPAES/modified membrane was higher than that of the non-modified MMT.

Separation of Hydrogen-Nitrogen Gases by PTMSP-Borosilicate Composite Membranes (PTMSP-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.438-447
    • /
    • 2014
  • The amorphous and porous borosilicate without any cracks was obtained under the following condition : 0.01~ 0.10 mole ratio of trimethylborate (TMB)/ tetraethylorthosilicate (TEOS) and the temperature of $700{\sim}800^{\circ}C$. According to the BET and SEM measurements, borosilicate heat-treated in between 700 and $800^{\circ}C$ showed the surface area of $251.12{\sim}355.62m^2/g$, the pore diameter of 3.5~4.9 nm, and the particle size of 30~60 nm. According to the TGA measurements, the thermal stability of poly[1-(trimethylsilyl)propyne](PTMSP) membrane was enhanced by inserting borosilicate. SEM observation showed that the size of dispersed borosilicate in the composite membrane was $1{\mu}m$. The results showed that the permeability of $H_2$ and $N_2$ increased and the selectivity of $H_2/N_2$ decreased upon the addition of borosilicate into PTMSP membranes. Addition of borosilicate may possibly increase the free volume, cavity and porosity of membranes indicating that permeation occurred by molecular sieving, surface and Knudsen diffusion rather than solution diffusion of gases.

Evaluation of Properties and Fabrication of Tubular Supports Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 SOFC 관형 세라믹 지지체의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.214-219
    • /
    • 2010
  • In this study, we fabricated tubular ceramic support for segmented-in-series solid oxide fuel cell (SOFC) by using CSZ(CaO-stabilized $ZrO_2$) as main material and activated carbon as pore former. Thermal expansion properties of ceramic support with different amounts of activated carbon were analyzed by using dilatometer to decide a suitable sintering temperature. The tubular ceramic supports with different amounts of activated carbon (5, 10, 15wt.%) were fabricated by the extrusion technique. After sintering at $1100^{\circ}C$ and $1400^{\circ}C$ for 5h., cross section and surface morphology of tubular ceramic support were analyzed by using SEM image. Also, the porosity, mechanical property, gas permeability of tubular ceramic supports was measured. Based on these results, we established the suitable fabrication technique of tubular ceramic support for segmented-in-series SOFC.

Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution (알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향)

  • SHIM, JOONGPYO;LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;LEE, HONG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.