• Title/Summary/Keyword: Hydrogen partial pressure

Search Result 102, Processing Time 0.027 seconds

The Effect of Hydrogen Pressure on Partial Discharge Spectroscopy in Turbine Generator Winding Insulations (화력 발전기 고정자 권선에서의 수소 압력에 따른 부분 방전 특성)

  • Kim, Jin-Bong;Hwang, Don-Ha;Kim, Yong-Joo;Park, Myong-Soo;Kim, Taek-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1320-1325
    • /
    • 1995
  • For hydrogen-cooled large turbine generators, partial discharges in ground wall insulations are suppressed by high hydrogen pressure. The first goal of the experiment is to investigate the effect of hydrogen pressure on partial discharge activity and aging rate in turbine generator winding insulations. A series of tests have been performed on two groups of the accelerated aging experiments. The first group of stator windings was aged under hydrogen pressure of 4 atm while the second group of stator windings was aged under air atmosphere. The stator windings aged under air atmosphere suffer from larger partial discharge magnitude with larger voids at high electrical stress than those under hydrogen pressure. The second goal of the experiment is to evaluate the validity of on-line measurement technique which is normally measured under hydrogen environment. The test results show that further experiments are needed to apply the on-line scheme to turbine generator being under high hydrogen pressure.

  • PDF

Hydrogen Reduction Behavior of NCM-based Lithium-ion Battery Cathode Materials (NCM계 리튬이온 배터리 양극재의 수소환원 거동)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.163-168
    • /
    • 2024
  • As the demand for lithium-ion batteries for electric vehicles is increasing, it is important to recover valuable metals from waste lithium-ion batteries. In this study, the effects of gas flow rate and hydrogen partial pressure on hydrogen reduction of NCM-based lithium-ion battery cathode materials were investigated. As the gas flow rate and hydrogen partial pressure increased, the weight loss rate increased significantly from the beginning of the reaction due to the reduction of NiO and CoO by hydrogen. At 700 ℃ and hydrogen partial pressure above 0.5 atm, Ni and Li2O were produced by hydrogen reduction. From the reduction product and Li recovery rate, the hydrogen reduction of NCM-based cathode materials was significantly affected by hydrogen partial pressure. The Li compounds recovered from the solution after water leaching of the reduction products were LiOH, LiOH·H2O, and Li2CO3, with about 0.02 wt% Al as an impurity.

Sludge Granulation Depending Hydrogen Feeding on The Varying Periods of Hydrogen Feeding and Starvation (수소기질 결핍 및 공급 기간비 변화에 따른 슬러지 입상화)

  • Jeong, Byung-Gon;Lee, Heon-Mo;Yang, Byung-Soo
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.387-398
    • /
    • 1996
  • Granular sludge formation and it's activity change are the most important factors in achieving successful start-up and operation of UASB reactor. Nevertheless, the detailed mechanism is still unknown. On the basic of the experiments in laboratory-scale UASB reactor, the effect of hydrogen partial pressure on sludge granulation was evaluated. Size distribution method and specific metabolic activity of the sludge with the operation time were used as a means for estimating the degree of the sludge granulation. At the constant hydrogen loading, the granulation increased as starvation periods in hydrogen supply increased, resulting in high organic removal efficiency. It was evidient that hydrogen play very important role in granulation and sludge granulation was achieved through mutual symbiosis between hydrogen utilizing bacteria and hydrogen producing bacteria under the hydrogen dificient conditions. Key words : granular sludge, UASB reactor, hydrogen partial pressure.

  • PDF

Study on the Reduction of Forging Oxide Scale using Hydrogen (단조 산화스케일로부터 철계분말 제조 기술개발 연구)

  • Lee, Dong-Won;Yun, Jung-Yeul;Shin, Shun-Myung;Kim, In-Soo;Wang, Jei-Pil
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2013
  • The study on the fabrication of iron powder from forging scales using hydrogen gas has been conducted on the effect of hydrogen partial pressure, temperature, and reactive time. The mechanism for the reduction of iron oxides was proposed with various steps, and it was found that reduction pattern might be different depending on temperature. The iron content in the scale and reduction ratio of oxygen were both increased with increasing reactive time at 0.1atm of hydrogen partial pressure. On the other hand, for over 30 minutes at 0.5 atm of hydrogen partial pressure, the values were found to be almost same. In the long run, iron metallic powder was obtained with over 90% of iron content and an average size of its powder was observed to be about $100{\mu}m$.

Effect of Hydrogen Partial Pressure Ratio on Electrical and Structural Properties of ZnO Thin Film (ZnO 박막의 전기적 구조적 특성에 미치는 수소 분압비의 영향)

  • Lee, Sung-Hun;Shin, Min-Geun;Byon, Eung-Sun;Kim, Do-Geun;Jeon, Sang-Jo;Koo, Bon-Heun
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.6
    • /
    • pp.250-254
    • /
    • 2006
  • Effect of hydrogen partial pressure ratio on the structural and electrical properties of highly c-axis oriented ZnO films deposited by oxygen ion-assisted pulsed filtered vacuum arc at a room temperature was investigated. The hydrogen partial pressure ratio were $1.4%\sim9.8%$ at 40% oxygen pressure ratio. The conductivity of ZnO:H films was increased from 1.4% up to 4.2% due to relatively high carrier mobility caused by improvement of crystallinity While the conductivity of ZnO:H films were decreased over than 4.2% and (0002) orientation was also deteriorated. The lowest resistivity of ZnO:H films was $2.5{\times}10^{-3}\;{\Omega}{\cdot}cm$ at 4.2% of hydrogen pressure ratio. Transmittance of ZnO:H films in visible range was 85% which is lower than that of undoped ZnO films because of declined preferred orientation.

Effect of $H_2S$ Partial Pressure and pH of Test Solution on Hydrogen Induced Cracking of High Strength Low Alloy Steels

  • Kim, Wan Keun;Koh, Seong Ung;Kim, Kyoo Young;Yang, Boo Young;Jung, Hwan Kyo
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.236-241
    • /
    • 2005
  • Hydrogen induced cracking (HIC) is one of the hydrogen degradation phenomena of linepipe steels caused by $H_2S$ gas in the crude oil or natural gas. However, NACE TM0284-96 standard HIC test method is hard to satisfy the steel requirements for sour service application since it uses more severe environmental conditions than actual conditions. Therefore, in order to use steels effectively, it is required to evaluate HIC resistance of steels in the practical range of environmental severity. In this study, HIC resistance of two high strength low alloy (HSLA) steels being used as line pipe steels was evaluated in various test solutions with different $H_2S$ pressures and pH values. The results showed that the key parameter affecting crack area ratio (CAR) is $H_2S$ partial pressure of test solution when the pH value of test solution is not over 4. Hydrogen diffusivity was not a constant value, but it was rather affected by the hydrogen ion concentration (pH value) in the solution.

Influence of the Water Vapor Content on the Hydrogen Reduction Process of Nanocrystalline NiO

  • Jung, Sung-Soo;An, Hyo-Sang;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.315-319
    • /
    • 2010
  • In this study, the hydrogen reduction behavior of ball-milled NiO nanopowder was investigated depending on the partial pressure of water vapor. The hydrogen reduction behavior was analyzed by thermogravimetry and hygrometry under heating to 873 K in hydrogen. In order to change the partial pressure of the water vapor, the dew point of hydrogen was controlled in the range of 248 K~293 K by passing high-purity hydrogen through a saturator that contained water. Interestingly, with the increase in the dew point of the hydrogen atmosphere, the first step of the hydrogen reduction process decreased and the second step gradually increased. After the first step, a pore volume analysis revealed that the pore size distribution in the condition with a higher water vapor pressure shifted to a larger size, whereas the opposite appearedat a lower pressure. Thus, it was found that the decrease in the pore volume during the chemical reaction controlled process at a dew point of 248 K caused a reduction in retardation in the diffusion controlled process.

Effect of Partial Oxygen Pressure on the Growth and Defense Enzyme Activities of Streptomyces coelicolor in continuous culture system (Streptomyces coelicolor의 연속 배양시 산소 분압에 따른 방어 효소의 활성 변화)

  • 박용두;이계준;노정혜
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.538-543
    • /
    • 1994
  • Effect of partial oxygen pressure on the cell growth and the activities of oxidative defense enzymes were measured in the continuous culture of Streptomyces coelicolor. Both the wild type and the mutant strain resistant to hydrogen peroxide were cultured and the dry cell weight of the two cultures were measured at different oxygen tensions. Growth of the wild type was inhibited by oxygen at above 0.5 vvm. Growth of the hydrogen peroxide resistant mutant was stimulated by pure oxygen at 0.5 vvm but was inhibited by oxygen at 1.0 vvm. Therefore, growth of the hydrogen peroxide resistant mutant was less affected by the deleterious oxidative stress of oxygen. Activities of the several defense enzymes were also measured at different oxygen tensions. Activities of catalase and glucose-6-phosphate dehydrogenase increased significantly as oxygen pressure increased in the wild type culture. In the mutant, however, increase in those enzyme activities was not obvious whereas the uninduced levels of the above enzymes were higher than those of wild type. As judged by Western blotting, the amount of the major catalase increased as the oxygen pressure increased. This indicates that the induction of the catalase activity by oxygen pressure is mostly due to the increase in the expression level for the major catalase.

  • PDF

Partial Pressures of $CO_2\;and\;H_2$ and Fate of By-products in Anaerobic Bio-Hydrogen Fermentation (혐기성 생물수소 발효에서 이산화탄소 및 수소의 분압과 부산물의 거동)

  • Park, Woo-Shin;Kim, In-S.
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.408-412
    • /
    • 2005
  • In a previous research, it has been found that it could be possible to increase the partial pressure of hydrogen and hydrogen yield by scavenging the $CO_2$ from the heads pace of reactor. In this research, the positive and negative effects of the $CO_2$ scavenging especially on the fate of by-products were investigated by a batch experiment. Production and conversion of by-products had critical relationships with hydrogen evolution and consumption. The maximum hydrogen fraction in the headspace was increased from 66.4 to 91.2% by removing the $CO_2$ in the headspace and the degradation rate of glucose was also enhanced. The removal of $CO_2$ effectively hindered the homoacetogenesis but caused several negative phenomena. The degradation of ethanol, one of the main products, was inhibited by the high partial pressure of hydrogen and/or the absence of $CO_2$. Also it was observed that other by-products such as propionate, propanol, acetone, etc. could not be degraded further after produced from glucose. On the other hand, solventogenesis was not observed in spite of the high hydrogen partial pressure apart from previous researches and it might hinder the excess production of acetate, which could cause overall inhibition. From this research, it could be implicated that the $CO_2$ scavenging method could be recommended if the fermentation was purposed to produce hydrogen and ethanol.

DFT Investigation of Phase Stability of Magnesium Alanate (Mg(AlH4)2) for Reversible Hydrogen Storage (가역적 수소 저장을 위한 마그네슘 알라네이트 (Mg(AlH4)2) 나노 입자 활용 : 밀도범함수이론 연구)

  • DONG-HEE LIM;EUNMIN BAE;YOUNG-SOO HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.169-177
    • /
    • 2023
  • Phase stability diagrams were constructed for magnesium alanate (Mg(AlH4)2) nanoparticles to investigate the reversible hydrogen storage reaction by using density functional theory. Our findings indicate that bulk Mg(AlH4)2 shows favorable hydrogen release, but unfavorable hydrogen uptake (adsorption) reactions. However, for Mg(AlH4)2 nanoparticles, it was observed that hydrogen release and recharge can be achieved by controlling the particle size and temperature. Furthermore, by predicting the decomposition phase diagram of Mg(AlH4)2 nanoparticles with varying hydrogen partial pressure, it was discovered that reversible dehydrogenation reactions can occur even in relatively large nanoparticles by controlling the hydrogen partial pressure.