• Title/Summary/Keyword: Hydrogen overvoltage

Search Result 15, Processing Time 0.019 seconds

Synthesis of Ni-MWCNT by pulsed laser ablation and its water splitting properties (레이저 어블레이션 공정에 의한 Ni-MWCNT 합성 및 물분해 특성)

  • Cho, Kyoungwon;Chae, Hui Ra;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.77-82
    • /
    • 2022
  • Recently, research on the development of low-cost/high-efficiency water electrolysis catalysts to replace noble metal catalysts is being actively conducted. Since overvoltage reduces the overall efficiency of the water splitting device, lowering the overvoltage of the oxygen evolution reaction (OER) is the most important task in order to generate hydrogen more efficiently. Currently, noble metal catalysts show excellent characteristics in OER performance, but they are experiencing great difficulties in commercialization due to their high price and efficiency limitations due to low reactivity. In this study, a water electrolysis catalyst Ni-MWCNT was prepared by successfully doping Ni into the MWCNTs structure through the pulsed laser ablation in liquid (PLAL) process. High resolution-transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were performed for the structure and chemical composition of the synthesized Ni-MWCNT. Catalytic oxygen evolution reaction evaluation was performed by linear sweep voltammetry (LSV) overvoltage characteristics, Tafel slope, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Chronoamperometry (CA) was used for measurement.

Effect of Electrolysis Condition on Mechanical Property of Ni Electrodeposits (니켈 도금층의 기계적 성질에 미치는 전해조건의 영향)

  • Kang, Soo Young;Lee, Jeong Ja;Yang, Seung Gi;Hwang, Woon Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.62-67
    • /
    • 2015
  • Nickel is a commercially important and versatile element in electroplating. The applications of nickel electroplating fall into three main categories: decorative, functional and electroforming. In decorative applications, electroplated nickel is most often applied in combination with electrodeposited chromium. Nickel is deposited on surfaces to improve corrosion and wear resistance or modify magnetic and other properties. Electroforming is electroplating applied to the fabrication of products of various kinds. Nickel is deposited onto a substrate and then removed from it to create a part made entirely of nickel. In this study, mechanical property of Ni electrodeposits in various manufacturing condition such as temperature, current density, pH and electrolyte content, was investigated to understand effect of electrolysis condition on mechanical property. Vickers hardness increased as the temperature and pH increased and current density and electrolyte content decreased and pH increased. The results were explained by cathode overvoltage and hydrogen evolution.

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis (양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구)

  • Lee, Han Eol;Linh, Doan Tuan;Lee, Woo-kum;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.332-339
    • /
    • 2021
  • Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.

Synthesis of Fe-doped β-Ni(OH)2 microcrystals and their oxygen evolution reactions (Fe 도핑된 β-Ni(OH)2 마이크로결정 합성과 산소발생반응 특성)

  • Je Hong Park;Si Beom Yu;Seungwon Jeong;Byeong Jun Kim;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.196-201
    • /
    • 2023
  • In order to improve the efficiency of the water splitting system for hydrogen energy production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds (hydroxide, sulfide, etc.) are attracting attention as catalyst materials to replace currently used precious metals such as platinum. In this study, Ni foam, an inexpensive metal porous material, was used as a support and β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the crystal morphology, crystal structure, and water splitting characteristics of β-Ni(OH)2 microcrystals synthesized by doping Fe to improve electrochemical properties were observed, and applicability as a catalyst in a commercial water electrolysis system was examined.

Effects of Mo co-doping into Fe doped β-Ni(OH)2 microcrystals for oxygen evolution reactions (Fe-doped β-Ni(OH)2의 산소발생반응 증가를 위한 Mo의 동시도핑효과)

  • Je Hong Park;Si Beom Yu;Tae Kwang An;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • In order to improve the efficiency of the water splitting system for hydrogen production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metal porous material, was used as a support, and Fe-doped β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, in order to improve OER properties, changes in the shape, crystal structure, and water splitting characteristics of Fe-Mo co-doped β-Ni(OH)2 microcrystals synthesized by co-doping with Mo were observed. The changes in the shape, crystal structure, and applicability as a catalyst for water splitting were examined.