• Title/Summary/Keyword: Hydrogen industry

Search Result 410, Processing Time 0.025 seconds

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

Ultraviolet Microscopic Study on Lignin Distribution in the Fiber Cell Wall of BCTMP

  • Yoon, Seung-Lak;Yasuo Kojina
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • Bleached chemithermomechanical pulp (BCTMP) was produced from CTMP of Betula maximowicziana Regel by two staged ozone-hydrogen peroxide bleaching in order to improve the optical properties of high yield pulp. This pulp was used for the evaluation of optical properties improvement, chemical characteristics of lignin in fiber and the relationship between lignin and optical properties in fiber cell wall. Hydrogen peroxide treatment improved the brightness, but the post color number (PC No.). There was little improvement on optical properties by ozone treatment, but this could be improved more by using two staged ozone-hydrogen peroxide bleaching. The hydrogen peroxide treatment did not make any change on chemical characteristics of lignin in cell wall, but by ozone treatment, it was found that the non-aromatic conjugated structure was existed in the surface of cell wall, but this could be removed by hydrogen peroxide treatment in two staged ozone-hydrogen peroxide treatment. Therefore, the optical properties was significantly improved, due to the removal of non-aromatic conjugated structure.

Numerical Study of the Snubber of Reciprocating Hydrogen Compressing System

  • Rahman, M. Sq.;Lee, Gyeong-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1358-1365
    • /
    • 2008
  • By Computational Fluid Dynamics simulation, general information about an internal gas flow can be achieved. This will be very useful to improve flow inside the pipes and snubber system. Relating with hydrogen compressing system, which plays an important role in hydrogen energy utilization, this method should be a powerful tool to observe the flow quickly and clearly. Flow pressure characteristic analysis of hydrogen gas flowing through the snubber of a reciprocating compressor is presented in this paper. The CFD calculation of pressure pulsation and pressure loss are very close to the experiment. Therefore, consequently development of the better hydrogen compressing system will be observed with better understanding by CFD.

  • PDF

Preliminary Economic Analysis based on Optimization of Green Ammonia Plant Configuration in the Middle East for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok;Woo-Hyun Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.277-285
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'net zero'. Due to limitations in producing green hydrogen domestically, Korean companies are interested in importing green hydrogen produced overseas. The Middle East has high-quality solar energy resources and is attracting attention as a region producing green hydrogen using renewable energy. To build a green ammonia plant, optimization of the production facility configuration and economic feasibility analysis are required. It is expected that it will contribute to reviewing the economic feasibility of constructing overseas hydrogen production plants through preliminary economic feasibility analysis.

Economic Feasibility Comparison of Overseas Green Ammonia Project Using Renewable Energy (신재생 에너지를 이용한 해외 그린 암모니아 프로젝트에 대한 경제성 비교)

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.547-553
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'Net Zero'. Due to limitations in domestic green hydrogen production, Korean companies are interested in importing green hydrogen produced overseas. Because Australia and the Middle East possess high-quality renewable energy resources, they are attracting attention as suitable regions for producing green hydrogen using renewable energy. The cost of constructing and operating a green ammonia plant varies depending on the region. In this study, an economic feasibility comparison of green ammonia plant construction in Australia and the Middle East is conducted. Through this, it is expected to contribute to the economic analysis and feasibility analysis of the project to import hydrogen in the form of green ammonia into Korea.

Inplementation of a Hydrogen Leakage Simulator with HyRAM+ (HyRAM+를 이용한 수소 누출 시뮬레이터 구현)

  • Sung-Ho Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.551-557
    • /
    • 2024
  • Hydrogen is a renewable energy source with various characteristics such as clean, carbon-free and high-energy, and is internationally recognized as a "future energy". With the rapid development of the hydrogen energy industry, more hydrogen infrastructure is needed to meet the demand for hydrogen. However, hydrogen infrastructure accidents have been occurring frequently, hindering the development of the hydrogen industry. HyRAM+, developed by Sandia National Laboratories, is a software toolkit that integrates data and methods related to hydrogen safety assessments for various storage applications, including hydrogen refueling stations. HyRAM+'s physics mode simulates hydrogen leak results depending on the hydrogen refueling station components, graphing gas plume dispersion, jet frame temperature and trajectory, and radiative heat flux. In this paper, hydrogen leakage data was extracted from a hydrogen refueling station in Samcheok, Gangwon-do, using HyRAM+ software. A hydrogen leakage simulator was developed using data extracted from HyRAM+. It was implemented as a dashboard that shows the data generated by the simulator using a database and Grafana.

Analysis of Damage Range and Impact of On-Site Hydrogen Fueling Station Using Quantitative Risk Assessment Program (Hy-KoRAM) (정량적 위험성평가 프로그램(Hy-KoRAM)을 이용한 제조식 수소충전소 피해범위 및 영향 분석)

  • KIM, HYELIM;KANG, SEUNGKYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.459-466
    • /
    • 2020
  • As the hydrogen industry grows, expansion of infrastructure for hydrogen supply is required, but the safety of hydrogen facilities is concerned due to the recent accidents at the Gangneung hydrogen tank and the Norwegian hydrogen fueling station. In this study, the damage range and impact analysis on the on-site hydrogen fueling station was conducted using Hy-KoRAM. This is a domestically developed program that adds functions based on HyRAM. Through this risk assessment, it was evaluated whether the on-site hydrogen fueling station meets international standards and suggested ways to improve safety.

A Review of Technology Development Trend for Hydrogen and Syngas Production with Coke Oven Gas (코크스 오븐 가스(COG)를 이용한 수소 및 합성가스 제조 기술 개발 동향 분석)

  • Choi, Jong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1247-1260
    • /
    • 2022
  • The steel industry accounts for about 5% of the total annual global energy consumption and more than 6% of the total anthropogenic carbon dioxide emissions. Therefore, there is a need to increase energy efficiency and reduce greenhouse gas emissions in these industries. The utilization of coke oven gas, a byproduct of the coke plant, is one of the main ways to achieve this goal. Coke oven gas used as a fuel in many steelmaking process is a hydrogen-rich gas with high energy potential, but it is commonly used as a heat source and is even released directly into the air after combustion reactions. In order to solve such resource waste and energy inefficiency, several alternatives have recently been proposed, such as separating and refining hydrogen directly from coke oven gas or converting it to syngas. Therefore, in this study, recent research trends on the separation and purification of hydrogen from coke oven gas and the production of syngas were introduced.

Properties of Bleachability of Paper Mulberry Pulp by Hydrogen Peroxide and Ultrasonication Bleaching System (과산화수소와 초음파 표백 시스템에 따른 닥나무 펄프의 표백 효율 특성)

  • Seo, Jin-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Nowadays, the concern on the environmental load of bleaching process gave rise to the process of ECF(elemental chlorine free) and TCF(total clorine free). These sequences are based on oxygen-derived compounds such as oxygen, ozone, and hydrogen peroxide which is used as a typical eco-friendly bleaching agent. In this study, paper mulberry pulp was bleached with hydrogen peroxide and some bleaching process were accompanied with ultrasonication in order to increase the bleaching efficiency. The best bleaching efficiency of paper mulberry pulp was obtained in the condition of hydrogen peroxide and ultrasonication(20 kHz) bleaching system at $45^{\circ}C$ for 30 min. The brightness and kappa number of paper mulberry pulp were gained to 5.09% and 3.52 respectively. and yield was slightly loosed to 2%. Therefore, the efficiency of hydrogen peroxide and ultrasonication bleaching system of paper mulberry pulp was superior to the conventional hydrogen peroxide bleaching system. Magnesium sulfate acted as a bleaching stabilizer for the increasement of yield. As a result, the yield and viscosity were increased to 2.2% and 12% respectively.

Hydrogen Aging During Hole Expanding Tests of Galvanized High Strength Steels Investigated Using a Novel Thermal Desorption Analyzer for Small Samples

  • Melodie Mandy;Maiwenn Larnicol;Louis Bordignon;Anis Aouafi;Mihaela Teaca;Thierry Sturel
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2024
  • In the automotive industry, the hole expanding test is widely used to assess the formability of punched holes in sheets. This test provides a good representation of formability within the framework defined by the ISO 16630 standard. During hole expanding tests on galvanized high strength steels, a negative effect was observed when there was a delay between hole punching and expansion, as compared to performing both operations directly. This effect is believed to be caused by hydrogen aging, which occurs when hydrogen diffuses towards highly-work hardened edges. Therefore, the aim of this study is to demonstrate the migration of hydrogen towards work-hardened edges in high strength Zn-coated steel sheets using a novel Thermal Desorption Analyzer (TDA) designed for small samples. This newly-developed TDA setup allows for the quantification of local diffusible hydrogen near cut edges. With its induction heating and ability to analyze Zn-coated samples while reducing artifacts, this setup offers flexible heat cycles. Through this method, a hydrogen gradient is observed over short distances in shear-cut galvanized steel sheets after a certain period of time following punching.