• 제목/요약/키워드: Hydrogen generation system

검색결과 280건 처리시간 0.03초

수소 발생기를 포함한 마이크로 PEM 연료전지 시스템 (A Micro PEM Fuel Cell System Including a Hydrogen Generator)

  • 김대중
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.558-559
    • /
    • 2008
  • 본 논문은 미 일리노이 주립대 어바나-샴페인 캠퍼스에서 주로 군사용 응용 관련하여 개발 중인 마이크로 PEM 연료전지 시스템 개발에 대한 논문이다. 본 연구는 수소 저장 장치까지 포함하여 1 $mm^3$의 초소형 연료전지 시스템을 목표로 진행 중이며 본 논문은 이러한 진행 과정 중 화학적 하이드라이드 기반의 수소 발생기와 10 $mm^3$의 시스템 개발 과정에 대해 보고한다.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for Fuel Cell Electric Bus)

  • 김우준;박창호;조경석;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for FCEV Bus)

  • 박창호;조경석;김우준;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

Hydrothermal Pre-treatment and Gasification of Solid Wastes to Produce Electrical Power and Hydrogen

  • Yoshikawa, Kunio
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2006년도 고분자리싸이클링 심포지엄
    • /
    • pp.3-12
    • /
    • 2006
  • The main feature of these total technologies is that we can constitute the optimum treatment scheme fitting to the property of wastes, amount of wastes and energy requirement. For high moisture content wastes or biomass resources, high pressure steam process (MMCS) for crush, dry and deodorize wastes to produce high quality fertilizer of fuel is most appropriate. For dry or semi-dry solid wastes, the STAR-MEET system can be applied to produce low-BTU gases for power generation using duel fueled diesel engines of Stirling engines, and the REPRES and HyPR-MEET systems can be applied to produce hydrogen rich medium-BTU gas. For waste plastics and oils, liquefaction technology is best fit to produce light oil or kerosene equivalent fuel oils. These total technologies are completely different from the existent waste treatment technologies based on land-filling or incineration, and are expected to disseminate all over the world in the near future.

  • PDF

하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석 (Analysis of cause of engine failure during power generation using biogas in sewage treatment plant)

  • 김길정;김래현
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.13-29
    • /
    • 2016
  • 본 연구에서는 실제 난지 하수처리장에서 바이오가스를 연료로 사용하여 발전할 때, 가스엔진에서 발생하는 고장 사례에 대한 조사와 분석을 통해 바이오가스 플랜트의 주요 고장원인을 분석하고, 그 대책을 제시하였다. 바이오 가스엔진에 유입되는 바이오 가스 속의 황화수소와 수분 제거설비의 간헐적인 오작동으로 인한 수분이 바이오 가스엔진의 인터쿨러 부식을 초래하였다. 또한 바이오가스 속의 실록산이 이산화규소와 규산염 화합물을 형성하여 피스톤 표면 및 실린더라이너 내벽의 긁힘과 마모 등의 손상을 유발하였다. 연소실과 배기가스 설비에 부착된 물질들은 황화수소와 다른 불순물질이 결합한 것으로 분석되었다. 이러한 원인으로는 바이오 가스 속의 고함량(50ppm이상)의 황화수소가 탈황설비에 장기간 공급되었고, 탈황설비내 활성탄의 파과점 도달에 따른 제거효율 저하 때문에 황화수소가 엔진으로 유입됨으로써 발생한 것으로 사료된다. 또한, 황화수소는 흡착탑의 실록산 제거용 활성탄 기능을 저하시킴으로써 제거되지 않은 실록산 화합물이 엔진으로 유입되어 다양한 형태의 엔진고장을 유발한 것으로 판단된다. 따라서, 황화수소와 실록산, 수분은 바이오 가스엔진 고장의 주요 원인으로 볼 수 있으며, 이 중 황화수소는 고장을 일으키는 다른 물질과 반응하며, 전처리 공정에 중대한 영향을 미치는 물질로 볼 수 있다. 결과적으로, $H_2S$ 제거방법의 최적화가 안정적인 바이오 가스엔진 운영을 위한 필수적인 대책으로 사료된다.

강원도 지역 스마트 수소에너지 플랜트 입지계획을 위한 다기준 공간의사결정 지원 시스템 연구 (A Multi-Criteria Spatial Decision Support System for Smart Hydrogen Energy Plant Location Planning in the Gangwon-Do Region, South Korea)

  • 염상국;아드히카리 마니크
    • 대한토목학회논문집
    • /
    • 제43권3호
    • /
    • pp.381-395
    • /
    • 2023
  • 본 연구에서는 강원도 지역 스마트 수소 에너지 발전소의 위치 적합성 분석을 GIS 기반 다중기준 의사결정 분석(MCDA)을 활용하여 수행하였다. 적합지 분석을 위하여, 수소 활용 잠재력과 기후 조건, 환경 및 지형 조건, 자연 재해 발생 가능성 등의 사회지리학적 조건과 더불어 관련 공간데이터 레이어를 활용하여 수소 에너지 발전소의 잠재적 위치에 대한 적합성 평가를 수행하였다. 이후 공간 데이터 레이어를 기반으로 위치의 적합성에 따라 순위를 매기고 AHP 결과에 따라 우선순위를 선정하였다. 연구 결과, 강원도 지역 전체면적의 약 4.26%인 712.14 km2가 스마트 수소 에너지 발전소 건설에 적합한 지역으로 파악되었으며, 철원군, 춘천시, 원주시, 양구군, 강릉시, 횡성군 및 동해안 연안 지역의 일부 지역은 태양 및 풍력 에너지 이용에 적합한 지역으로 확인되었다. 본 연구 결과를 활용하여 의사 결정자 및 이해관계자들이 스마트 수소 에너지 발전소의 위치 선정에 관해 적합한 결정을 내릴 수 있는 가이드라인으로 활용될 수 있다고 판단된다.

가스정압관리소 기반의 복합에너지허브 기본설계 (A Basic Design of Multi Energy Hub Based on Natural Gas Governor Station)

  • 박소진;김형태;김진욱;강일오;유현석;최경식
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.405-410
    • /
    • 2020
  • In this literature, we are introduce a basic design of multi energy hub based on natural gas governor station. Multi energy hub consists of turbo expender generator, phosphoric acid fuel cell, pressure swing adsorption, H2 charging station, utilities and etc. We design a hybrid energy hub system that provides energy using these complex energies, and calculates the amount of electricity that can be produced and the amount of hydrogen charged through the process analysis. TEG and phosphoric acid fuel cell produce 2,290 to 2,380 kW and can supply electricity to 500 houses. In addition, By-product H2 gas is refined to H2 vehicle fuel. This will help maximize the balance of energy demand and supply and improve national energy efficiency by integrating unused decompression energy power generation technology and various power generation/heat source technologies.

산업연관분석을 통한 초고온가스로 건설 파급효과 분석 (VHTR Construction Ripple Effect Analysis Using Inter-Industry Tables)

  • 이태훈;이기영
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.39-44
    • /
    • 2015
  • The VHTR (Very High Temperature gas-cooled nuclear Reactor) has been considered as a major heat source and the most safe generation IV type reactor for mass hydrogen production to prepare for the hydrogen economy era. The VHTR satisfies goals for the GIF (Generation IV International Forum) policy such as sustainablility, economics, reliability and proliferation resistance and physical protection, and safety. As a part of a VHTR economic analysis, we have studied the VHTR construction cost and operation and maintenance cost. However, it is somewhat difficult to expect the ripple effect on the whole industry due to the lack of information about Inter-industries relationship. In many case, the ripple effect are based on experts' knowledge or uncertain qualitative assumptions. As a result, we propose quantitative analysis techniques for ripple effects such as the production inducement effect, added value inducement effect, and employment inducement effect for VHTR 600MWt${\times}$4 modules construction and operation ripple effect based on NOAK (Nth Of A Kind). Because inducement effect values have been published annually, we predict inducement effect's relation function and estimated values including production inducement effect value, added value inducement effect value, and employment inducement effect value using time series and estimated values are verified with published inducement effects' value. This paper presents a new method for the ripple effect and preliminary ripple effect consequence using a time series analysis and inter-industry table. This ripple effect analysis techniques can be applied to effect expectation analysis as well as other type reactor's ripple effect analysis including VHTR for process heat.

$NaBH_4$를 이용한 소형연료전지용 수소저장시스템 개발 (The Hydrogen Generation System Using Sodium Borohydride for Small Fuel Cells)

  • 강순기;한기철;조준배;박태희;유용호
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2004년도 수소연료전지공동심포지움 2004논문집
    • /
    • pp.129-134
    • /
    • 2004
  • 문헌 연구를 통해 최적의 수소저장물질의서 수소저장 효율, 물질의 안정성 및 경제성이 우수한 나트륨붕소수소화물($NaBH_4$, sodium borohydride)을 선정하여, 소형연료전지용 수소저장시스템에 대한 다양한 특성을 조사하였다. $NaBH_4$의 기초 물성 조사를 위해 수소 발생 능력, 용해도, 수소 비발생 등의 실험을 수행하였으며 다양한 촉매의 특성비교는 물론 수소저장시스템의 설계시 핵심적으로 고려할 수 있는 Key factor의 특성을 파악하였다.

  • PDF

양극 닫힌계 작동에서 수소 배출 방법에 의한 고분자전해질 연료전지 성능 영향 (Effect of Hydrogen Purge Mode on the Polymer Electrolyte Membrane Fuel Cell (PEMFC) Performance under Dead-ended Anode Operation)

  • 김준섭;김준범
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.687-693
    • /
    • 2019
  • 수소전기차와 발전을 시작으로 수소연료전지 시장이 성장하면서 연료전지와 수소의 수요가 증가하고 있으므로, 조기 상용화와 시장 활성화를 위하여 연료전지의 내구성과 연료 이용효율에 관한 연구가 진행되어야 한다. 본 연구에서는 연료전지의 성능과 연료 이용효율을 최적화하기 위하여 양극 닫힌계의 운전조건에 대한 연구를 수행하였다. 부하 전류에 대한 배출 조건과 수소 공급 압력이 고분자전해질 연료전지의 성능에 미치는 영향에 대하여 평가하였고, 전해질막 두께에 대한 물의 역확산 영향을 분석하였다. 양극 닫힌계에서 수소극에 쌓인 물은 연료전지 전압이 3% 감소한 경우에 솔레노이드 밸브를 열어 배출하였다. 수소 공급 압력은 0.1~0.5 bar, 배출 시간은 0.1~1 s까지 변화시키면서 실험을 수행하였다. NR 211 (25.4 um) 전해질막의 경우 0.1 bar의 수소 공급 압력과 0.1 s 배출 시간 조건에서 수소 이용효율 98.9%의 가장 높은 연료 이용효율을 보였지만 잦은 flooding으로 인하여 장시간 운전 시 연료전지의 성능이 감소하였다. 이에 반해 NR 212 (50.8 um)의 전해질막에서 생성된 물과 질소의 역확산 속도를 늦추어 배출 간격을 늘리고 연료 이용효율을 높일 수 있었다.