• Title/Summary/Keyword: Hydrogen exchange

Search Result 408, Processing Time 0.028 seconds

Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis (PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조)

  • Lee, Hyuck-Jae;Jung, Yun-Kyo;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

EVALUATION OF FERROCYANIDE ANION EXCHANGE RESINS REGARDING THE UPTAKE OF Cs+ IONS AND THEIR REGENERATION

  • Won, Hui-Jun;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Won-Yang
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.489-496
    • /
    • 2008
  • Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake $Cs^+$ ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the $Cs^+$ ion of the surrogate soil decontamination solution, and resin-KCoFC showed the best $Cs^+$ ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the $Cs^+$ ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the $Fe^{2+}$ ion in the reduction step could also be reduced by adding the $K^+$ ion.

Performance test of scale-up $20Nm^3/hr$ scale hydrogen generator for hydrogen station (수소스테이션용 $20Nm^3/hr$급 수소제조장치 스케일-업 및 성능시험)

  • Oh, Young-Sang;Baek, Young-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.37-42
    • /
    • 2006
  • In this study, $20Nm^3/hr$ scale compact hydrogen generator which can be apply to the hydrogen station was tested for hydrogen station application. $20Nm^3/hr$ scale compact hydrogen generator was developed by upgrading concept of stacking plate reactor from former $20Nm^3/hr$ scale plate hydrogen generator. concepts for improving system efficiency and performance include such as idea of heat recovery from the exhaust, exhaust duct which is especially design for plate type reactor reinforcement of insulation, enlargement of heat exchange area of reactor, introduction of desulphurizer reactor and PROX rector in a compact design, introduction of back fire protection structure of plate burner and so on, We can learn that final prototype of scale-up $20Nm^3/hr$ scale compact hydrogen generator can be operated steadily in 100% road at which over 94% of methane conversion(S/C=3.75) was obtained. In case of making up the weak point, we expect that it is possible to apply to hydrogen station by way of showing an example.

  • PDF

Hydrogen Production by the Reaction of Al and Alkaline Solution for PEMFC Application (알루미늄 알칼리용해에 의한 PEMFC용 수소 생성)

  • Sim, Woo-Jong;Na, Il-Chal;Song, Myung-Hyun;Chung, Hoi-Bum;Kim, Jeong-Ho;Kim, Tae-Hee;Park, Kwon-Pil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Hydrogen production by the reaction of aluminum alloys and NaOH solution was studied for an automotive proton exchange membrane fuel cell(PEMFC) application. In our experiment conditions($30{\sim}75^{\circ}C$, NaOH $0.5{\sim}5M$), passivation of aluminum was not occurred. Higher rate of hydrogen production was observed at the reaction with Al alloys that contain impurities. With an increase in reaction temperature, hydrogen production rate by an increase in NaOH concentration increased much. When hydrogen was fed into the anode without filtering, PEMFC cell performance decreased 35% by ionic contamination such as $Na^+$ on the membrane and electrode. Thus, filtering of produced hydrogen is necessary for PEMFC operation.

Analysis of R&D Investment for Hydrogen and Fuel Cell (수소.연료전지 연구개발 투자현황 분석)

  • Park, No-Eon;Kim, Hyung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.143-148
    • /
    • 2010
  • Research and Development (R&D) investment of hydrogen and fuel cell, funded by government from 2007 to 2008 in Korea, has been analyzed. R&D investment of hydrogen and fuel cell in 2008 would see 9% and 29% of total budget in the field of renewable energy, respectively. It was found that R&D investment is mainly dependent on mission of Ministry in Korea. Basic and apply research would be mainly invested by Ministry of Education, Science and Technology (MEST), while development research would be conducted by Ministry of Knowledge Economy (MKE). In R&D investment by performer, hydrogen technology would be conducted by government-funded institute and university. It was also shown that funds for hydrogen production have been much supported than hydrogen storage. Meanwhile, fuel cell would be mainly conducted by major companies. It was also shown that funds for proton exchange membrane fuel cell (PEMFC) have been much invested than other technology in fuel cell.

A Study on the Electrochemical Hydrogenation Reaction Mechanism of the Laves Phase Hydrogen Storage Alloys (Laves phase계 수소저장합금의 전기화학적 수소화 반응 매카니즘에 관한 연구)

  • Lee, Ji-Youl;Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.1
    • /
    • pp.31-41
    • /
    • 1997
  • In order to investigate the mechanism of electrochemical hydrogenation reaction on Zr-based Laves phase hydrogen storage alloy electrodes, electrochemical charge/discharge characteristics, potentiostatic/dynamic polarizations and electrocehmical impedance spectroscopy(EIS) of Zr-Ti-Mn-Ni and Zr-Ti-Mn-Ni-M(M=Fe, Co, Al) alloys were examined. Electrochemical discharge capacities of the alloys were quite different with gas charge capacities. Therefore, it was considered that discharge capacities of the alloys depend on electrochemical kinetic factors rather then thermodynamic ones. Discharge efficiencies were increased linearly with exchange current densities. The results of potentiostatic/dynamic polarization measurements showed that electrochemical charge and discharge reaction of Zr-based Laves phase hydrogen storage alloys is controlled by charge transfer process at the electrode surface. The EIS measurements also confirmed this result.

  • PDF

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.

Enhancement of Hydroxylamine Reactivity of Bacteriorhodopsin at High Temperature

  • Sonoyama, Masashi;Mitaku, Shigeki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.299-301
    • /
    • 2002
  • Recent denaturation experiments of bacteriorhodopsin (bR) in the dark and under illumination at high temperatures revealed that irreversible thermal bleaching occurs above ~ 70°C and the preceding reversible structural changes in the dark above 60°C are closely related to irreversible photobleaching observed in the same temperature range (Yokoyama et al. (2002). J Biochem. 131,785). In this study, structural properties of bacteriorhodopsin (bR) at high temperatures were extensively probed by hydroxylamine reactivity with the Schiff base in the dark and hydrogen-deuterium (H-D) exchange in the peptide groups. In the Arrhenius plot from kinetics measurements of the hydroxylamine reaction, a good linear relationship between the reaction time constant and the inverse of the absolute temperature was observed below 60°C, while significant increase started above 60°C, suggesting that remarkable increase in water accessibility of the Schiff base in the temperature region. FT-IR spectroscopic studies on the H-D exchange suggested increase in the deuterium exchanges rate of the peptide hydrogen in the same temperature region.

  • PDF

Synthesis and Characterization of Fluorinated Polybenzimidazole Proton Exchange Membranes for Fuel Cell (연료전지용 불소화 폴리벤즈이미다졸 양성자 교환 멤브레인 합성 및 특성평가)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • A fluorinated polybenzimidazole (FPBI) was synthesized from 3,3-diaminobenzidine (DAB) of tetraamine, 2,2-bis(4-carboxyphenyl)hexafluoropropane of aromatic biscarboxylic acid, and 4,4-sulfonyldibenzoic acid of aromatic biscarboxylic acid in polyphosphoric acid (PPA). A FPBI was easily cast and made into clear films. The structure of condensation polymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (fourier transform infrared). TGA (thermogravimetric analysis) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. The proton conductivity of the FPBI membranes increased with increasing temperatures in the polymer. A FPBI membrane has a maximum ion conductivity of 45 mS/cm at $90^{\circ}C$ and 100% relative humidity.