• Title/Summary/Keyword: Hydrogen embrittlement

Search Result 168, Processing Time 0.023 seconds

Hydrogen Embrittlement Evaluation of Subsurface Zone in 590DP Steel by Micro-Vickers Hardness Measurement (미소경도 측정에 의한 590DP강 Subsurface Zone 내 수소취성 평가)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.581-586
    • /
    • 2011
  • This study describes a hydrogen embrittlement evaluation of the subsurface zone in 590DP steel by micro-Vickers hardness measurement. The 590DP steel was designed to use in high-strength thin steel sheets as automotive materials. The test specimens were fabricated to 5 series varying the chemical composition through the process of casting and rolling. Electrochemical hydrogen charging was conducted on each specimen with varying current densities and charging times. The relationship between the embrittlement and hydrogen charging conditions was established by investigating the metallography. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of the subsurface zone in addition to the microscopic investigation. The micro-Vickers hardness increased with the charging time at the surface. However, the changing ratio and maximum variation of hardness with depth were nearly the same value for each test specimen under the current density of 150 mA/$cm^2$ and charging time of 50 hours. Consequently, it appears that hydrogen embrittlement in 590DP steel can be evaluated by micro-Vickers hardness measurement.

A Study on the Effect of Solidification Substructure on the Hydrogen Embrittlement of Inconel 718 Fabricated by Selective Laser Melting (Selective laser melting 방식으로 제작된 Inconel 718 합금의 수소취성에 미치는 응고셀 조직의 영향에 관한 연구)

  • Lee, Dong-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.203-210
    • /
    • 2022
  • In this study, hydrogen embrittlement in Inconel 718 fabricated by selective laser melting (SLM) was investigated. To focus on the effect of the SLM-induced solidification substructure, hydrogen embrittlement behavior of SLM as-built (SLM-AB) sample and that of conventionally produced (Con-S) sample were systematically compared. The detailed microstructural characterization showed that the SLM-AB sample exhibited a solidification substructure including a high density of dislocations and Laves phase, while the Con-S sample showed completely recrystallized grains without any substructure. Although the intrinsic strength in the SLM-AB sample was higher than the Con-S sample, the resistance to hydrogen embrittlement was higher in the SLM-AB sample. Nevertheless, a statistical analysis of the hydrogen-assisted cracks (HACs) revealed that the predominant HAC type of SLM-AB and Con-S samples was similar, i.e., intergranular HAC. The difference in the resistance to hydrogen embrittlement between the SLM-AB and Con-S samples were discussed in terms of the relation between the microstructural feature and its effect on hydrogen accumulation.

Effect of Cr and Mo Contents on Hydrogen Embrittlement of Tempered Martensitic Steels (템퍼드 마르텐사이트강의 수소취성에 미치는 Cr 및 Mo 함량의 영향)

  • Sang-Gyu, Kim;Jae-Yun, Kim;Hee-Chang, Sin;Byoungchul, Hwang
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.466-473
    • /
    • 2022
  • The effect of Cr and Mo contents on the hydrogen embrittlement of tempered martensitic steels was investigated in this study. After the steels with different Cr and Mo contents were austenitized at 820 ℃ for 90 min, they were tempered at 630 ℃ for 120 min. The steels were composed of fully tempered martensite with a lath-type microstructure, but the characteristics of the carbides were dependent on the Cr and Mo contents. As the Cr and Mo contents increased, the volume fraction of film-like cementite and prior austenite grain size decreased. After hydrogen was introduced into tensile specimens by electrochemical charging, a slow strain-rate test (SSRT) was conducted to investigate hydrogen embrittlement behavior. The SSRT results revealed that the steel with lower Cr or lower Mo content showed relatively poor hydrogen embrittlement resistance. The hydrogen embrittlement resistance of the tempered martensitic steels increased with increasing Mo content, because the reduction in the film-like cementite and prior austenite grain size plays an important role in improving hydrogen embrittlement resistance. The results indicate that controlling the Cr and Mo contents is essential to achieving a tempered martensitic steel with a combination of high strength and excellent hydrogen embrittlement resistance.

Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

Evaluation of Hydrogen Embrittlement of High Strength Steel for Automobiles by Small Punch Test (소형펀치시험을 이용한 자동차용 고강도강 수소취성 평가)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The hydrogen embrittlement of high strength steel for automobiles was evaluated by small punch (SP) test. The test specimens were fabricated to be 5 series, having various chemical compositions according to the processes of heat treatment and working. Hydrogen charging was electrochemically conducted for each specimen with varying of current density and charging time. It was shown that the SP energy and the maximum load decreased with increasing hydrogen charging time in every specimen. SEM investigation results for the hydrogen containing samples showed that the fracture behavior was a mixed fracture mode having 50% dimples and 50% cleavages. However, the fracture mode of specimens with charging hydrogen changed gradually to the brittle fracture mode, compared to the mode of other materials. All sizes and numbers of dimples decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause of fracture for high strength steels for automobiles; also, it is shown that the small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels for automobiles.

Effect of Annealing Treatment on Microstructure and Hydrogen Embrittlement of Ti-6Al-4V Alloys Subject to Electrochemical Hydrogen Charging (전기화학적 수소 주입에 의한 Ti-6Al-4V 합금의 미세조직과 수소 취성에 미치는 어닐링 처리의 영향)

  • Ko, S.W.;Lee, J.M.;Kwon, Y.N.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.211-217
    • /
    • 2020
  • This paper presents a study on the hydrogen embrittlement of Ti-6Al-4V alloys with different microstructures depending on annealing treatment. They were electrochemically charged with hydrogen and subjected to tensile tests to investigate hydrogen embrittlement behavior. Tensile test results showed that the elongation of Ti-6Al-4V alloy specimens was remarkably decreased with increasing the volume fraction of β phase after hydrogen charging. This is because the β phase with a relatively low diffusivity tends to easily form a hydride at grain boundaries during electrochemical hydrogen charging. After hydrogen charging of the Ti-6Al-4V alloy specimen, it found that silver particles were decorated mostly at the grain boundary, and coarser silver particles were usually formed in the specimen annealed at 950 ℃. Therefore, the specimen having higher β phase fraction shows a poor hydrogen embrittlement resistance because the β phase promotes the formation of coarse hydride during electrochemical hydrogen charging, which leads to a large decrease in ductility.

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Hydrogen Embrittlement of Zr-2.5Nb Pressure Tube at Room Temperature by Precipitated Hydride (수소화물에 의한 Zr-2.5Nb 압력관의 상온 수소취화 거동)

  • Oh, Dong-Joon;Boo, Myung-Hwan;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.455-463
    • /
    • 2003
  • The aim of this study is to investigate the hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube at room temperature. The transverse tensile and fracture toughness tests were performed at various hydrogen concentrations using transverse tensile specimens and CCT (curved compact tension) specimens. These specimens were directly machined from the pressure tube retaining original curvatures. Based on the results of these tests. the hydrogen embrittlement phenomenon was clearly observed and fracture toughness parameters of Zr-2.5Nb pressure tube materials such as, $K_{J(0.2)}$.$J_{ML}$.dJ/da, were dramatically decreased with the increasement of the hydrogen concentration. From microscopic observation by SEM and TEM, it was also revealed that various shapes dimples, fissures and quasi-cleavage were found at the hydrogen-absorbed materials with hydrides while traditional shape dimples were generally located at the as-received materials Through the comparison of the hydride and fissure lengths with the hydrogen concentration the new evaluation method of hydrogen embrittlement was suggested.

Parametric Studies on Hydrogen Embrittlement in Liquified Hydrogen Tank using Molecular Dynamics Simulation (분자동역학을 이용한 액화수소 연료탱크의 수소취성화 파라메터 연구)

  • Song-Hyun, Cha;Hyun-Seok, Kim;Seonho, Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.325-331
    • /
    • 2022
  • Hydrogen embrittlement in metals has been a serious issue with regard to structural safety. In this study, molecular dynamics simulations revealed that the aggregation of hydrogen atoms at the crack tips suppresses the dislocation emission and thus results in cleavage fracture. A series of molecular dynamics simulations were performed considering factors such as the concentration of hydrogen atoms, loading rate, and diffusion coefficient. We investigated the conditions that minimize hydrogen embrittlement. The simulation results were consistent with the experimental results and used to quantify hydrogen embrittlement.

Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection (알루미늄 합금의 수소취화 방지를 위한 경질양극산화 및 플라즈마이온질화의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.221-231
    • /
    • 2023
  • Interest in aluminum alloys for the hydrogen valves of fuel cell electric vehicles (FCEVs) is growing due to the reduction in fuel efficiency by the high weight. However, when an aluminum alloy is used, deterioration in mechanical characteristics caused by hydrogen embrittlement and wear is regarded as a problem. In this investigation, the aluminum alloy used to prevent hydrogen embrittlement was subjected to surface treatments by performing hard anodizing and plasma ion nitriding processes. The hard anodized Al alloy exhibited brittleness in which the mechanical characteristics rapidly deteriorated due to porosity and defects of surface, resulting in a decrease in the ultimate tensile strength and modulus of toughness by 15.58 and 42.51%, respectively, as the hydrogen charging time increased from 0 to 96 hours. In contrast, no distinct nitriding layer in the plasma ion-nitrided Al alloy was observed due to oxide film formation and processing conditions. However, compared to 0 and 96 hours of hydrogen charging time, the ultimate tensile strength and modulus of toughness decreased by 7.54 and 13.32%, respectively, presenting excellent resistance to hydrogen embrittlement.