• Title/Summary/Keyword: Hydrogen electrode

Search Result 638, Processing Time 0.028 seconds

Electrochemical Reduction of Perchlorate Using Mercury Film Electrode (수은 막전극을 이용한 수용액 중 과염소산이온의 전기화학적 환원)

  • Myung, Noseung;Kim, Eun Young;Jee, Hyung-Woo;Keum, Narae;Rhee, Insook;Paeng, Ki-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • A method for electrochemical degradation of the perchlorate anion ($ClO_4{^-}$) using mercury film electrode has been studied. Electrochemical method has relatively simple pre-treatment. However, electrochemical method should avoid interference from hydrogen evolution at the applied potential to degradation of perchlorate ion, and thus applied electrode should have large hydrogen overvoltage which suppressed the hydrogen evolution at the working reduction potential to prevent hydrogen evolution. In this study, we used mercury film electrode as a working electrode which has a large overvoltage. Ag / AgCl (sat. NaCl) was used as a reference electrode, and platinum was used as a counter electrode. Mercury film electrode was made by cyclic voltammetry (CV) method. The deposition time was decided as 10 minute, and the stability of the mercury electrode in perchlorate solution was confirmed by CV. The reduction potential of perchlorate was checked by using CV method, and decomposition of perchlorate was performed by using chronoamperometric (CA) method. Also, ion chromatography (IC) was used to confirm the degradation rates of perchlorate.

Factors Afecting Hydrogen Evolution in Chlorobium limicola f. theosulfatophilum NCIB 8327 (Chlorobium limicola f. thiosulfatophilum NCIB 8327에서 수소발생에 영향을 끼치는 요인분석)

  • 나종욱;강사욱
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.553-557
    • /
    • 1992
  • Hydrogen produced by cells of grown Chlorobium limicola f. thiosulfatophilum NCIB 8327 on modified Pfennig's medium containing glutamate as a major nitrogen source, was measured by amperometric method. In this system, oxygen, light. ammonia, methionine sulfoximine, NADPH, ATP, methyl viologen and benzyl viologen are affected. The production of hydrogen in intact cells depends on light intensity. It is also inhibited by adding ammonium ions, but restores immediately by adding methionine sulfoximine. Considering these results, the production of hydrogen in this strain can be mediated by nitrogenase.

  • PDF

Hydrogen Impurities Analysis From Proton Exchange Membrane Hydrogen Production (양자교환막을 이용하여 생산된 수소의 불순물 분석)

  • Lee, Taeckhong;Kim, Taewan;Park, Taesung;Choi, Woonsun;Kim, Hongyoul;Lee, Hongki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.288-294
    • /
    • 2013
  • This gas analysis data come from the hydrogen which is produced by proton exchange membrane. Main impurities of hydrogen are methane, oxygen, nitrogen, carbon monoxide, and carbon dioxide. The concentration of impurities is ranged between 0.0191 to $315{\mu}mol/mol$ for each impurity. Methane contamination is believed from the electrode reaction between carbon doped electrode and produced hydrogen. Nitrogen contamination should take place the sampling process error, not from PEM hydrogen Production system.

Manufacturing Process Improvement of Electrode for PEMFC (공정 효율 향상을 위한 연료전지전극 개발)

  • PARK, SEOK JUNG;LEE, JAE SEUNG;LEE, KI SUB;ROH, BUM WOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.547-553
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to reduce cost of full stack assembly. Regarding Membrane Electrode Assembly, the major issue is to improve fuel cell activation process in the initial Hydrogen Oxidation Reaction and Oxygen Reduction Reaction. In this research, the VD (Vacuum Drying) process has been developed for improvement of activation process. The VD condition is developed by controlling the temperature and degree of vacuum to remove the remaining solvent of electrode. Consequently, the electrode applied to VD process showed the low characteristics such as 3.5% of remaining solvent content and the improved efficiency such as 15% of activation process speed.

Chitosan-Cu-salen/Carbon Nano-Composite Based Electrode for the Enzyme-less Electrochemical Sensing of Hydrogen Peroxide

  • Jirimali, Harishchandra Digambar;Saravanakumar, Duraisamy;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.169-175
    • /
    • 2018
  • Cu-Salen complex was prepared and attached into chitosan (Cs) polymer backbone. Nanocomposite of the synthesized polymer was prepared with functionalized carbon nano-particles (Cs-Cu-sal/C) to modify the electrode surface. The surface morphology of (Cs-Cu-sal/C) nanocomposite film showed a homogeneous distribution of carbon nanoparticles within the polymeric matrix. The cyclic voltammogram of the modified electrode exhibited a redox behavior at -0.1 V vs. Ag/AgCl (3 M KCl) in 0.1 M PB (pH 7) and showed an excellent hydrogen peroxide reduction activity. The Cs-Cu-sal/C electrode displays a linear response from $5{\times}10^{-6}$ to $5{\times}10^{-4}M$, with a correlation coefficient of 0.993 and detection limit of $0.9{\mu}M$ (at S/N = 3). The sensitivity of the electrode was found to be $0.356{\mu}A\;{\mu}M^{-1}\;cm^{-2}$.

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

A Mathematical Model for the Discharge Mechanism of a Metal Hydride Electrode (금속수소 전극의 방전기구에 대한 수학적 모델)

  • Shin, Chee Burm;Hong, Jung Ho;Yun, Kyung Suk;Cho, Byung Won;Cho, Won Il;Jeon, Gui
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.768-773
    • /
    • 1998
  • A mathematical model of discharge mechanism of metal-hydride (MH) electrode was presented. A computer simulation program was developed in order to predict the variation of electrode potential and the distribution of hydrogen concentration within MH particles during discharge. By investigating the effects of the discharge current density, the size of MH particle, the diffusivity of hydrogen in MH particle, and the porosity of the electrode, it was found that these factors exerted a collective effect on the discharge characteristic of the electrode and the utilization of hydrogen in the MH particle. It was confirmed that and optimization of design factors of an MH electrode is necessary in order to execute a high-rate discharge and to improve the utilization of hydrogen in MH particle.

  • PDF

Effects of Process Variables on the Growth of Dendrite in the Electrochemical Alane(AlH3) Production Process (전기화학적 알레인(AlH3) 제조 공정에서 덴드라이트의 성장에 미치는 공정 변수 영향)

  • KIM, HYOSUB;PARK, HYUNGYU;PARK, CHUSIK;BAE, KIKWANG;KIM, YOUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.532-540
    • /
    • 2015
  • Electrochemical alane ($AlH_3$) production process can be provided as a synthesis route which close a reversible cycle. In this study, growth inhibition of dendrite as key issues in this process was investigated. Main cause of dendrite growth was because Al fine powder separated in consumption process of Al electrode was moved to Pd electrode. In an effort to avoid this, use of glass block with uniform holes was the most effective to inhibit the amount of dendrite to that of $AlH_3$. Furthermore, effects of Al electrode (anode) type and electrolyte concentration were investigated and the optimal condition for inhibiting dendrite formation was proposed.

A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys (불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF

A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys

  • Lee, Sang-Min;Kim, Seoung-Hoe;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.197-210
    • /
    • 1999
  • The hydrogen storage performance and electrochemical properties of $Zr_{1-X}Ti_X(Mn_{0.2}V_{0.2}Ni_{0.6})_{1.8}$(X=0.0, 0.2, 0.4, 0.6) alloys are investigated. The relationship between discharge performance and alloy characteristics such as P-C-T characteristics and crystallographic parameters is also discussed. All of these alloys are found to have mainly a C14-type Laves phase structure by X-ray diffraction analysis. As the mole fraction of Ti in the alloy increases, the reversible hydrogen storage capacity decreases while the equilibrium hydrogen pressure of alloy increases. Furthermore, the discharge capacity shows a maxima behavior and the rate-capability is increased, but the cycling durability is rapidly degraded with increasing Ti content in the alloy. In order to analyze the above phenomena, the phase distribution, surface composition, and dissolution amount of alloy constituting elements are examined by S.E.M., A.E.S. and I.C.P. respectively. The decrease of secondary phase amount with increasing Ti content in the alloy explains that the micro-galvanic corrosion by multiphase formation is little related with the degradation of the alloys. The analysis of surface composition shows that the rapid degradation of Ti-substituted Zr base alloy electrode is due to the growth of oxygen penetration layer. After comparing the radii of atoms and ions in the electrolyte, it is clear that the electrode surface becomes more porous, and that is the source of growth of oxygen penetration layer while accelerating the dissolution of alloy constituting elements with increasing Ti content. Consequently, the rapid degradation (fast growth of the oxygen-penetrated layer) with increasing Ti substitution in Zr-based alloy is ascribed to the formation of porous surface oxide through which the oxygen atom and hydroxyl ion with relatively large radius can easily transport into the electrode surface.

  • PDF