• Title/Summary/Keyword: Hydrogen doping

Search Result 97, Processing Time 0.032 seconds

Thermal Stability of Hydrogen Doped AZO Thin Films Prepared by r.f. Magnetron Sputtering

  • Park, Yong-Seop;Lee, Su-Ho;Kim, Jung-Gyu;Ha, Jong-Chan;Hong, Byeong-Yu;Lee, Jun-Sin;Lee, Jae-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.699-700
    • /
    • 2013
  • Aluminum and hydrogen doped zinc oxide (AZHO) films were prepared by r.f. magnetron sputtering. The structural, electrical, and optical properties of the AHZO films were investigated in terms of the annealing conditions to study the thermal stability. The XRD measurements revealed that the degree of c-axis orientation was decreased and the crystallintiy of the films was deteriorated by the heat treatment. The electrical resistivity was significantly increased when the films were annealed at higher temperature. Although the optical transmittance of AHZO films didn't highly changed by heat treatment, the optical band gap was reduced, regardless of annealing temperature and duration. The thermal stability of AHZO films was worse compared to AZO films.

  • PDF

Fabrication and Characterization of a-Si:H Films by a Remote Plasma Enhanced CVD (Remote Plasma Enhanced CVD에 의한 수소화된 비정질 실리콘 박막의 제작 및 특성연구)

  • Yang, Young-Sik;Yoon, Yeer-Jean;Jang, Jin
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.513-516
    • /
    • 1987
  • Hydrogenated amorphous silicon (a-Si:H) films have been deposited, for thye first time, by a remote plasma chemical vapor deposition. The hydrogen radical play a important role to control the deposition rate, The bonded hydrogen content to silicon is independent of hydrogen partial pressure in the plasma. Optical gap of deposited a-Si:H lies between 1.7eV and 1.8eV and all samples have sharp absorption edge. B-doped a-Si:H films by a RPECVD has a high doping efficiency compared with plasma CVD. The Fermi level of 100ppm B-doped film lies at 0.5eV above valence band edge.

  • PDF

Hydrogen Storage Technology by Using Porous Carbon Materials (다공성 탄소계 재료를 이용한 수소저장 기술)

  • Lee, Young Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.465-472
    • /
    • 2009
  • The technologies for improving the capacity of hydrogen storage were investigated and the recent data of hydrogen storage by using various porous carbon materials were summarized. As the media of hydrogen storage, activated carbon, carbon nanotube, expanded graphite and activated carbon fiber were mainly investigated. The hydrogen storage in the carbon materials increased with controlled pore size about 0.6~0.7 nm. In case of catalyst, transition metal and their metal oxide were mainly applied on the surface of carbon materials by doping. Activated carbon is relatively cheap because of its production on a large scale. Carbon nanotube has a space inside and outside of tube for hydrogen storage. In case of graphite, the distance between layers can be extended by intercalation of alkali metals providing the space for hydrogen adsorption. Activated carbon fiber has the high specific surface area and micro pore volume which are useful for hydrogen storage. Above consideration of research, porous carbon materials still can be one of the promising materials for reaching the DOE target of hydrogen storage.

Preparation of Epoxy/Organoclay Nanocomposites for Electrical Insulating Material Using an Ultrasonicator

  • Park, Jae-Jun;Park, Young-Bum;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.93-97
    • /
    • 2011
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a 0.35 ${\mu}M$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and 1.5 ${\mu}M$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($I_{SUB}$), drain to source leakage current ($I_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

SiO2 Doped Sapphire single Crystal Growth by Verneuil Method (Verneuil법에 의한 $SiO_2$를 첨가한 Sapphire 단결정 성장)

  • Cho, H.;Orr, K.K.;Choi, J.K.;Park, H.S.
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.822-826
    • /
    • 1992
  • SiO2 doped sapphire single crystals were grown by Verneuil method using feed material which prepared by adding SiO2 in Al2O3. Crystal growing were attempted with varing doping amount of SiO2 from 0.01 to 1.0 wt% and when the doping amount of SiO2 were 0.01~0.04 wt%, single crystals could be attained. Starting materials for feed powder were 99.99% purity alumina and extra pure SiO2 powder. Mixing these two materials by wet milling for 24 hours and drying the mixture and then was calcined at 900~110$0^{\circ}C$ for 2~4 hours. The grown crystals had yellowish color and were somewhat transparent. During growing process the flow range of oxygen was 5~7.5ι/min and of hydrogen was 13~25ι/min, the average growth rate was 7.0~11 mm/hr. The pressure of gases were fixed at 5psi. The color of crystal was appeared and mechanical property of sapphire was developed by doping of SiO2.

  • PDF

Characterization of Amorphous Silicon $n^{+}-p-p^{+}$ Solar Cells (비정질 실리콘 $n^{+}-p-p^{+}$ 태양전지의 특성 연구)

  • Lee, Yi-Sang;Kim, Jae-Boong;Lee, Young-Keun;Chu, Hye-Yong;Jang, Jin
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.324-327
    • /
    • 1988
  • The photovoltaic performances of a-si : H$n^{+}-p-p^{+}$ solar cells have been investigated. The optimum substrate temperature for the deposition of a-Si : H $n^{+}-p-p^{+}$ cell decreases with increasing doping concentration of the p-layer, and is less than 200$^{\circ}C$ when the gas phase doping concentration is higher than 10 ppm. The results can be explained as the dependences of substrate temperature for the relaxation of silicon atoms and for the bonded hydrogen concentration in the p-layer.

  • PDF

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim;Sung Jong Yoo;Jin Young Kim;Hyun S. Park;So Young Lee;Bora Seo;Kwan-Young Lee;Jong Hyun Jang;Hee-Young Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.96-110
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

A Study on the Analysis of Polycyclic Aromatic Hydrocarbons by RPLC/DAD (I) (RPLC/DAD를 이용한 Polycyclic Aromatic Hydrocarbon류의 분석에 관한 연구(I))

  • Lee, Won;Hong, Jee-Eun;Park, Song-Ja;Pyo, Hee Soo
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.315-324
    • /
    • 1997
  • The retention behaviors of 16 PAHs and 4 nitro-PAHs were studied with several parameters involved numbers of carbon atoms, F factor, aqueous solubility, L/B ratio, and numbers of interfering hydrogen atom pairs on the chemical structures of PAHs by using reversed-phase liquid chromatography/diode array detection method (RPLC/DAD) and gradient elution method. It was obtain that the log k' for most of PAHs with increasing the number of carbon and the F factor in their molecules. Chromatographic retention of PAH isomers and nitro-PAHs were examined with aqueous solubility, L/B ratio and number of interfering hydrogen atom pairs. As a result of comparison with these factors and retention times, it was found that those solutes having larger aqueous solubilities and greater L/B ratios were retained longer on stationary phase. This tendency was also occured in the molecules having the more number of interfering hydrogen atom pairs. Detection limits of PAHs which were obtained with three times measurements by RPLC/DAD were in the range of 100~500ng/mL and method detection limit(MDL) for water sample were in the range of 0.1~0.5ng/mL.

  • PDF

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

  • Kim, Hyun Sik;Kang, Soon Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2067-2072
    • /
    • 2013
  • Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.