• 제목/요약/키워드: Hydrogen distribution

검색결과 539건 처리시간 0.029초

Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process

  • Woo, Hyung-Joo;Choi, Han-Woo;Kim, Joon-Kon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권2호
    • /
    • pp.95-100
    • /
    • 2006
  • The GaAs-on-insulator (GOI) wafer fabrication technique has been developed by using ion-cut process, based on hydrogen ion implantation and wafer direct bonding techniques. The hydrogen ion implantation condition for the ion-cut process in GaAs and the associated implantation mechanism have been investigated in this paper. Depth distribution of hydrogen atoms and the corresponding lattice disorder in (100) GaAs wafers produced by 40 keV hydrogen ion implantation were studied by SIMS and RBS/channeling analysis, respectively. In addition, the formation of platelets in the as-implanted GaAs and their microscopic evolution with annealing in the damaged layer was also studied by cross-sectional TEM analysis. The influence of the ion fluence, the implantation temperature and subsequent annealing on blistering and/or flaking was studied, and the optimum conditions for achieving blistering/splitting only after post-implantation annealing were determined. It was found that the new optimum implant temperature window for the GaAs ion-cut lie in $120{\sim}160^{\circ}C$, which is markedly lower than the previously reported window probably due to the inaccuracy in temperature measurement in most of the other implanters.

극저온 액체수소 저장탱크 지지시스템의 열응력 해석 (Thermal Stress Analysis of the Support System in Cryogenic Liquid Hydrogen Storage Tank)

  • 박동훈;윤상국;이정환;조원일;백영순
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.239-245
    • /
    • 2005
  • The reduction of heat transfer rate to the stored liquid hydrogen from outside condition is extremely important to keep the liquid hydrogen longer. In this paper the highly efficient support system for the liquid hydrogen storage vessel was newly developed and analysed. The support system was composed of a spherical ball in the center of supporter to reduce the heat transfer area, with its above and below supporting blocks which are the SUS and PTFE blocks inserted in the SUS tube. The heat transfer rate and temperature distribution of the support system were evaluated by FLUENT, and the thermal stress and strain were estimated by ANSYS software. The results showed that the heat transfer rate from outer vessel to inner one was extremely decreased compared with the common method which is simply SUS tubes inserted between inner and outer tanks. The thermal stress and strain were obtained well below the limited values. As a result, it was the most efficient support system of storage vessel for liquid hydrogen and most cryogenic fluids.

  • PDF

원자력발전소 중대사고시 수소연소로 인한 격납용기 파손에 대한 확률적인 분석 (The Probabilistic Analysis on the Containment Failure by Hydrogen Burning at Severe Accidents in Nuclear Power Plants)

  • 박익규;문주현;박군철
    • Nuclear Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.411-419
    • /
    • 1994
  • 원자력발전소 중대사고시 예상되는 수소생성과 이에 따른 수소연소로 인한 압력증가로 야기되는 격납용기의 파손화률을 몬테카를로 방법을 통하여 계산하였다. 몬테카를로 계산을 수행하기 위해서는 각각의 입력변수들에 대한 적절한 확률분포함수가 요구되는데, 통계적인 처리를 통하여 구하였다. 고리 2호기에 대한 계산을 수행하였으며, 입력변수들에 대한 민감도 분석도 실시하였다. 고리 2호기에서 수소연소로 인한 격납용기의 파손확률은 60% 이하로 계산되었으며, 민감도 분석결과 SFD가 중요한 인자이긴 하지만 다른 인자들도 무시할 수 없는 영향을 미치고 있음이 밝혀졌다.

  • PDF

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

3차원 디지털 스페클 토모그래피를 이용한 수소 유동의 밀도 분포 분석 (Analysis of Density Distribution for Hydrogen Flow Using Three-dimensional Digital Speckle Tomography)

  • 안성수;고한서
    • 한국수소및신에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.253-261
    • /
    • 2005
  • 석유 연료 고갈 해결 및 온실 효과 가스 배풀 저감을 위한 방안으로 제시되는 수소는 다양한 에너지 저장체로 사용되어 질 수 있으나 안전성에 대한 연구가 요구되어진다. 따라서, 일반적인 저장 형태인 고압 저장 탱크에서 누출이 되었을 경우 분사되는 수소의 거동에 대한 연구가 이루어져야하며 이를 바탕으로 한 보완책이 제시되어야 한다. 이번 연구에서는 누설 시 확산되는 수소의 밀도를 실제 거동과 유사한 3차원 컴퓨터 영상장으로 합성한 후 ART(algebraic reconstruction technique) 및 MART(multiplicative ART)를 기반으로 한 3차원 디지털 스페클 토모그래피 기법을 개발하여 재건하고 분석하였다.

다층단열재와 증기냉각쉴드를 사용한 액체수소 저장용기의 열해석 (Thermal Analysis of a Liquid Hydrogen Vessel with Multi-Layer-Insulation and Vapor-Cooled Shield)

  • 정일권;강병하
    • 한국수소및신에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.284-289
    • /
    • 2005
  • Thermal analysis of cryogenic-capable vessels with insulations have been carried out to store liquid hydrogen($LH_2$). The combined insulations of MLI(Multi-Layer Insulation) and VCS(Vapor-Cooled Shield) under high vacuum are considered in the analysis for various volumes of vessels. Vapor-Cooled Shields(VCS) are installed at cylinder wall as well as disc side of the $LH_2$ vessels. The results indicate that optimal distribution of boiloff vapor from $LH_2$ vessel into two sides of VCS exists based on the evaporation loss. As the volume of $LH_2$ vessel is increased, mass flow rate of boiloff is increased while the evaporation loss per unit volume is decreased.

레이저 형광법에 의한 프로세싱 플라즈마 중의 수소원자 계측 (Measurement of Hydrogen Atoms in a Processing Plasma using Laser Induced Fluorescence)

  • 박원주;박성근;이광식;이동인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1307-1310
    • /
    • 1995
  • During measurement of atomic hydrogen in a silane plasma using two-photon excited laser induced fluoresecence, laser-induced dissociation of the gas was observed. This was investigated untill conditions for the input laser fluence were determined where the effect was negligible. A measurement of the atomic hydrogen distribution was then performed within the limits of these conditions. Absolute density determinations showed atomic hydrogen densities of around $3{\times}10^{17}m^{-3}$.

  • PDF

10mm 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 연소 현상 관찰 (Investigation on Catalytic Combustion of Hydrogen-Air Premixed Gas in 10mm Scale Catalytic Combustor)

  • 최원영;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.181-186
    • /
    • 2004
  • Catalytic combustion is one of the suitable methods which is applicable to micro heat source due to high energy density and no flame quenching. And hydrogen can be oxidized at room temperature with platinum catalyst. So hydrogen-fueled micro catalytic combustor with platinum catalyst can be good and easy-handling heat source for another micro devices. In this work we focused on general catalytic combustion characteristics of hydrogen-air premixed gas in 10mm scale catalytic combustor for the further application to micro scale. Platinum was coated on dense ceramic monolith which can be installed in simple-structured catalytic combustor. We investigated the effect of flow rate, heat loss and platinum percentage in catalyst-coated monolith on catalytic combustion performance by temperature distribution in the combustor. By those results we confirmed catalytic reactivity and estimated reaction area. And we simulated micro scale catalytic reaction by sliced monolith. The results of this work will be important design factors for micro scale catalytic combustor.

  • PDF

FUV Images and Physical Properties of the Orion-Eridanus Superbubble region

  • Ko, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.71.1-71.1
    • /
    • 2010
  • The far-ultraviolet (FUV) C IV and H2 emission spectra of Orion-Eridanus Superbubble (OES) is hereby presented. The OES seems to consist of multiple phase through the detection of highly-ionized gas and pervasive neutral hydrogen. The former is traced by hot gas while the latter is traced by cold medium. A spectral image made with H2 fluorescent emission shows that the spatial distribution of hydrogen molecule is well correlated with the dust map. The model spectra was taken from a photodissociation region (PDR) radiation code which finds a best suitable parameter such as hydrogen density and intensity of the radiation field. C IV emission is caused by intermediate temperature ISM about 10^5 K. Therefore we could get more clear evidence to reveal the morphology of OES. In this process, the hydrogen density and gas temperature were also estimated. The data were obtained with the Far-Ultraviolet Imaging Spectrograph (FIMS) and the whole data handling were followed by previous FIMS analysis.

  • PDF

Synthesis of High Purity Carbon Nano Fibers and Hydrogen from Propane Decomposition

  • Hussain, S.Tajammul;Gul, Sheraz;Mazhar, M.;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.389-392
    • /
    • 2008
  • High purity carbon nano fibers/tubes (CNF/Ts) which contain 97% pure graphitic carbon are prepared by a new catalytic method. These carbon nano fibers/tubes are ready to use without any further purification. The striking feature of this method is the production of carbon nano fibers/tubes of narrow distribution range. The developed catalytic method also produces pure hydrogen. An additional advantage of this catalytic method is that catalyst can be reused without reactivation. Ni:Cu catalyst system is embodied into SCHOTT-DURAN filter disc of large pore size (40-100 mm). Due to the production of hydrogen in the reaction catalyst stability is enhanced and deactivation process is considerably slowed down.