• Title/Summary/Keyword: Hydrogen diffusion

Search Result 438, Processing Time 0.068 seconds

Hydrogen Supplying System using Metal Hydride (금속 수소화물을 이용한 수소공급시스템)

  • Bae, Sang-Chul;Katsuta, Masafumi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.13-19
    • /
    • 2007
  • To find out the optimum design of hydrogen storage and supply tank using Metal Hydride (briefly MH) and to make clear the performance characteristics under various conditions are our research purpose. In order to use the low-temperature exhaust heat, $LaNi_{4.7}Al_{0.3}$ which operates under the low pressure of 1 MPa is chosen, and we measure the basic properties, namely density, specific heat, PCT(Pressure-Concentration-Temperature) characteristics, and effective thermal conductivity. Then, a numerical calculation model of hydrogen storage using MH alloy is suggested and this thermal diffusion equation of model is solved by the backward difference method. This calculation results are compared with the experimental results of the systems which installed 1kg MH alloy and, it is found out that our calculation model can well predict the experimental results. By the experimental using MH alloy, it is recognized that the hydrogen flow rate can control by the step adjustment of brine temperature.

  • PDF

Partitioning and Diffusion Properties of Hydrogen Gases In Porous Membranes Using the Nonoverlapping Sphere Model (비겹침 구형 모델을 이용한 세공 박막 내 수소 기체의 분산 및 확산 특성)

  • Suh, Soong-Hyuck;Ha, Ki-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.119-125
    • /
    • 1998
  • The modified statistical-mechanical theory for dense fluid mixtures of rigid spheres has been applied to rigid sphere fluids in the nonoverlapping pore model. The resulting expressions for the partition coefficient and diffusivity illustrate the influence of steric hindrance on the thermodynamic and transport properties in such systems. The open membrane model without the size-exclusion and shielding effects shows considerable overestimation of the diffusion flux when the effective mean pore radii of the order of $20{\AA}$ or less are involved. Theoretical predictions investigated here were also compared with experimental data for hydrogen gases in inorganic porous membranes and it was observed a qualitative agreement in the low pressure limit.

  • PDF

Development and validation of diffusion based CFD model for modelling of hydrogen and carbon monoxide recombination in passive autocatalytic recombiner

  • Bhuvaneshwar Gera;Vishnu Verma;Jayanta Chattopadhyay
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3194-3201
    • /
    • 2023
  • In water-cooled power reactor, hydrogen is generated in case of steam zirconium reaction during severe accident condition and later on in addition to hydrogen; CO is also generated during molten corium concrete interaction after reactor pressure vessel failure. Passive Autocatalytic Recombiners (PARs) are provided in the containment for hydrogen management. The performance of the PARs in presence of hydrogen and carbon monoxide along with air has been evaluated. Depending on the conditions, CO may either react with oxygen to form carbon dioxide (CO2) or act as catalyst poison, reducing the catalyst activity and hence the hydrogen conversion efficiency. CFD analysis has been carried out to determine the effect of CO on catalyst plate temperature for 2 & 4% v/v H2 and 1-4% v/v CO with air at the recombiner inlet for a reported experiment. The results of CFD simulations have been compared with the reported experimental data for the model validation. The reaction at the recombiner plate is modelled based on diffusion theory. The developed CFD model has been used to predict the maximum catalyst temperature and outlet species concentration for different inlet velocity and temperatures of the mixture gas. The obtained results were used to fit a correlation for obtaining removal rate of carbon monoxide inside PAR as a function of inlet velocity and concentrations.

Analysis of Influence Factors on Hydrogen Embrittlement of Pipe Steel according to Hydrogen Pipeline Operating Conditions (수소배관 운영 조건에 따른 배관강이 수소취성에 미치는 영향 인자 분석)

  • JONGHYUN BAEK;YUNCHAN JANG;CHEOLMAN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.216-229
    • /
    • 2024
  • Pipeline steels for hydrogen transmission may cause hydrogen embrittlement due to absorption and diffusion of hydrogen through metals. Hydrogen pipes exhibited similar mechanical properties to atmospheric conditions in terms of tensile and yield strength in a hydrogen atmosphere. This paper aims to provide relevant information regarding hydrogen embrittlement in hydrogen transmission pipeline.

Effect of Anode Gas Channel Height on Gas Diffusion and Cell Performance in a Molten Carbonate Fuel Cell (용융탄산염 연료전지 연료극 기체 유로 높이에 따른 가스 확산 및 단전지 성능 변화 연구)

  • Lee, Jung-Hyun;Kim, Do-Hyung;Kim, Beum-Ju;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.479-484
    • /
    • 2009
  • The effect of anode gas channel height on gas diffusion and cell performance in a 100 $cm^2$ class molten carbonate single cell is investigated. Single cell separators with three different channel height are used. The effect of the gas channel height on the distribution of the reactive gas concentration is evaluated by the two-dimensional concentration diffusion equation. The overpotential caused by concentration drop with different channel height is estimated by the voltage decay related to diffusion of reactants, well known as concentration polarization, using limiting current density. The estimation could have the possibility to identify the reactant mass transfer polarization in the complicate factors of the overall electrodes.

Kinetic Parameter Analysis of Hydrogen Diffusion Reaction for Hydrogen Storage Alloy of Fuel Cell System (연료전지의 수소저장용 합금에 대한 수소확산반응의 속도론적 해석)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-49
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : minh metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for fuel cell and Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-9}\;and\;10^{-10}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.

Study on synthesis of carbon nanomaterials by hydrogen mixing in counterflow methane diffusion flames (메탄 대향류 확산화염내 수소를 첨가한 탄소나노물질 합성에 관한 연구)

  • Shin, Woo-Jung;Choi, Jung-Sik;Yoon, Seok-Hun;Lee, Hyun-Sik;Choi, Jae-Hyuk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.88-89
    • /
    • 2011
  • The study on synthesis of carbon nanomaterials by H2 mixing in counterflow methane diffusion flames has been experimentally conducted. We have also investigated on effect of catalyst and temperature in flame. The counterflow flame was formed by many kind of gas (fuel side using $CH_4-H_2-N_2$ and oxidizer side $N_2-O_2$) and nitrogen shields discharge on each other side to cut off oxidizer of the atmosphere. Ferrocene was used as a metal catalyst for CNTs synthesis. substrate was used to deposit carbon nanomaterials and these were analyzed by FE-SEM. We could find that carbon nanotubes and many kind of carbon nano materials were formed in Cu wire substrate, through this experiment.

  • PDF

Unsteady Analysis of Acoustic-Pressure Responses of $N_{2}$ Diluted $H_{2}$ and Air Diffusion Flames (희석된 수소/공기 확산화염의 비정상 음향파 응답특성 해석)

  • Sohn, Chae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.320-325
    • /
    • 2003
  • Acoustic-Pressure Response of diluted hydrogen-air diffusion flames is investigated numerically by adopting a fully unsteady analysis of flame structures. In the low-pressure regime, the amplification index remains low and constant at low frequencies. As acoustic frequency increases, finite-rate chemistry is enhanced through a nonlinear accumulation of heat release rate, leading to a high amplification index. Finally, the flame responses decrease at high frequency due to the response lag of the transport zone. For a medium-pressure operation and low-frequency excitation, the amplification index is low and constant. It then decreases at moderate frequencies. As frequency increases further, the amplification index increases appreciably due to an intense accumulation effect.

  • PDF

Hydrogen Separation from Binary and Quaternary Gas Mixtures Using Organic Templating Silica Membrane (유기템플레이팅 실리카막을 이용한 이성분 및 사성분 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Chung, Jong-Tae;Lee, Jae-Wook;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.9-12
    • /
    • 2007
  • The transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using four binary and one quaternary hydrogen mixtures through permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical studies, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust gas model) were adapted to unsteady-state material balance.

  • PDF

NOx Emission Reduction and Mixing Enhancement of Turbulent Hydrogen Diffusion Flame by An Acoustic Excitation (음파가진에 의한 수소 확산 화염의 NOx 배출저감 및 혼합증진)

  • Han, Jeong-Jae;Kim, Mun-Ki;Yoon, Sang-Wook;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.305-313
    • /
    • 2005
  • Measurements of flame length, width and NOx emissions have been conducted to investigate the effect of an acoustic excitation on flame structure in turbulent hydrogen diffusion flames with coaxial air. The resonance frequency of oscillations was varied between 259 ,514 and 728 Hz with power rate of 0.405 and 2.88w. When these frequencies imposed to hydrogen flames, dramatic reduction of flame length and NOx emission was achieved. And acetone planar laser-induced fluorescence technique was used to measure a concentration of the near field of driven axisymmetric jet. The air-fuel stoichiometric line was plotted to investigate the mixing layer and development of air entrainment to fuel jet. Consequently, acoustic excitation on flame could enhance the air-fuel mixing resulting in abatement of NOx emission quantitatively.

  • PDF