• Title/Summary/Keyword: Hydrogen cell

Search Result 2,221, Processing Time 0.034 seconds

Development of Bifunctional Electrocatalyst for PEM URFC (고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발)

  • Yim, Sung-Dae;Park, Gu-Gon;Sohn, Young-Jun;Yang, Tae-Hyun;Yoon, Young-Gi;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

Flow analysis of the Hydrogen Recirculation System for Fuel Cells (연료전지 수소 재순환 시스템의 유동해석)

  • Kim, Jae-Choon;Lee, Yong-Taek;Chung, Jin-Taek;Kim, Yong-Chan;Hwang, In-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.759-764
    • /
    • 2005
  • In this paper, numerical analysis of hydrogen recycle system has been conducted in order to enhance the efficiency of automotive fuel cell. Generally, the excess hydrogen is provided in the automotive fuel cell. Since the non-reaction hydrogen reduces automotive fuel cell efficiency, reuse of the non-reaction hydrogen can be helpful to improve the fuel cell performance. In case of PEM FC, the water vapor is provided to hydrogen from the cathode so that the mixture experiences phase change depending on the changes of pressure and temperature. The internal flow of the mixture in the hydrogen recirculation system of fuel cell was investigated for real flow conditions. The variation of performance, properties and mass fractions of mixture, hydrogen and water-vapor were investigated. This study was performed based on 80KW level automotive fuel cell's recycling system.

  • PDF

Development of Tubular Solid Oxide Fuel Cells with Advanced Anode Current Collection (연료극 집전체 최적화를 적용한 원통형 고체산화물 연료전지 단전지 성능 향상)

  • Kim, Wanje;Lee, Seungbok;Song, Rakhyun;Park, Seokjoo;Lim, Takhyoung;Lee, Jongwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.480-486
    • /
    • 2013
  • In this study, tubular SOFC unit cell with advanced anode current collector was fabricated to improve the cell performance. First, we prepared two types of single cells having the same manufacture processes such as the same electrolyte, electrode coating condition and sintering processes. And then to compare the developed single cell performance with conventional cells, we changed the anode current collecting methods. From the impedance analysis and I-V curve analysis, the cell performance of advanced cell is much higher than that of conventional cell.

Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle (수소 연료전지차의 재순환시스템 모델링 연구)

  • Kim, Jae-Hoon;Noh, Young-Gyu;Jeon, Ui-Sik;Lee, Jong-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell (주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화)

  • TAESEONG KANG;SEONGHYEON HAM;HWANYEONG OH;YOON-YOUNG CHOI;MINJIN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

Effect of Distilled Water Supply Method on Performance of PEMWE Typed Hydrogen Generators for Inhalation (흡입용 PEMWE형 수소 발생기에서 증류수 공급 방법이 성능에 미치는 영향)

  • In-Soo, You;Hyunwoo, Bae;Joon Hyun, Kim;Jaeyong, Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.117-127
    • /
    • 2022
  • The present study has investigated the performance of hydrogen gas generators for inhalation purposes based on polyelectrolyte membrane water electrolysis (PEMWE). The system applied two watering methods. One is pumped water (pumping system) and the other is gravity-fed water without a pump (non-pumping system). The cell efficiencies were compared by measuring the cell voltage and temperature in the hydrogen gas generator, respectively. The results show that the cell voltage and temperature increase with the cell current. The cell temperature is lower in the pumping system than that in the non-pumping system at a given cell current. Even though the amount of hydrogen production is the same regardless of the pumping system, the cell efficiency of the hydrogen gas generator in the non-pumping system is better than that in the pumping system.

A Study to Simulate Cell Voltage-Reversal Behavior Caused by Local Hydrogen Starvation in a Stack of Fuel Cell Vehicle (연료전지차 스택 내 국부적 수소 부족에 기인한 셀 역전압 거동 모사에 대한 연구)

  • Park, Ji Yeon;Im, Se Joon;Han, Kookil;Hong, Bo Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.311-319
    • /
    • 2013
  • A clear understanding on cell voltage-reversal behavior due to local hydrogen starvation in a stack is of paramount importance to operate the fuel cell vehicle (FCV) stably since it affects significantly the cell performance and durability. In the present study, a novel experimental method to simulate the local cell voltage-reversal behavior caused by local hydrogen starvation, which typically occurs only one or several cells out of several hundred cells in a stack of FCV, has been proposed. Contrary to the conventional method of overall fuel starvation, the present method of local hydrogen starvation caused the local cell voltage-reversal behavior in a stack very well. Degradation of both membrane electrode assembly (i.e., pin-hole formation) and gas diffusion layer due to an excessive exothermic heat under voltage-reversal condition was also observed clearly.

An Economic Analysis of Domestic Fuel Cell Vehicles Considering Subsidy and Hydrogen Price (보조금과 수소가격을 고려한 국내 연료전지차의 경제성 분석)

  • Gim, Bongjin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • This paper deals with the economic analysis of domestic fuel cell vehicles considering subsidy and hydrogen price in 2015 and 2025. We selected TFCV (Tucson fuel cell vehicle) and TDV (Tucson diesel vehicle) to identify the economic feasibility of fuel cell vehicles compared with conventional internal combustion engine vehicles. We made some sensitivity analysis by changing input factors such as the size of the subsidy, the hydrogen price and the discount rate. Also, we made a break-even point analysis on hydrogen prices that equalize the economic feasibility of TFCV and TDV in 2025. As a result, TFCV is not economical in 2015 due to the relatively high prices of hydrogen and vehicles. If the sale prices of TFCV are 30,000,000 won and 35,000,000 won in 2025, then the break-even points of hydrogen prices are equal to 7,483 won/kg and 5,043 won/kg.

A experimental study on the sensor response at hydrogen leakage in a residential fuel cell system (가정용 연료전지 시스템 내부 수소 누출 시 센서 응답 특성에 관한 연구)

  • Kim, Young-Doo;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2009-2014
    • /
    • 2007
  • Hydrogen is a fuel of fuel cell system, which has powerful explosion possibility. Hence, the fuel cell system needs safety evaluation to prevent risk of hydrogen leakage. We use a actual size chamber of a common fuel cell module to analyze hydrogen. Hydrogen injection holes are located in lower part of the chamber in order to simulated hydrogen leakage. The hydrogen sensor can detect range of 0${\sim}$4%. Since the hydrogen gas, of which leaked amount is controled by MFC, are injected at the bottom holes, the transient sensor signals are measured. At a condition of 10cc/s of hydrogen leakage, the sensor detects hydrogen leakage after 22sec and there is also several seconds of time delay depending on the position of the sensor. This experimental data can be applied for the design of the hydrogen detection system and ventilation system of a residential fuel cell system.

  • PDF