• 제목/요약/키워드: Hydrogen bond

검색결과 593건 처리시간 0.024초

게이트 절연막 응용을 위한 Ca $F_2$ 박막연구 (The study of Ca $F_2$ films for gate insulator application)

  • 김도영;최유신;최석원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.239-242
    • /
    • 1998
  • Ca $F_2$ films have superior gate insulator properties than conventional gate insulator such as $SiO_2$, Si $N_{x}$, $SiO_{x}$, and T $a_2$ $O_{5}$ to the side of lattice mismatch between Si substrate and interface trap charge density( $D_{it}$). Therefore, this material is enable to apply Thin Film Transistor(TFT) gate insulator. Most of gate oxide film have exhibited problems on high trap charge density, interface state in corporation with O-H bond created by mobile hydrogen and oxygen atom. This paper performed Ca $F_2$ property evaluation as MIM, MIS device fabrication. Ca $F_2$ films were deposited at the various substrate temperature using a thermal evaporation. Ca $F_2$ films was grown as polycrystalline film and showed grain size variation as a function of substrate temperature and RTA post-annealing treatment. C-V, I-V results exhibit almost low $D_{it}$(1.8$\times$10$^{11}$ $cm^{-1}$ /le $V^{-1}$ ) and higher $E_{br}$ (>0.87MV/cm) than reported that formerly. Structural analysis indicate that low $D_{it}$ and high $E_{br}$ were caused by low lattice mismatch(6%) and crystal growth direction. Ca $F_2$ as a gate insulator of TFT are presented in this paper paperaper

  • PDF

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

Syntheses, Structures and Luminescent Properties of Two Novel M(II)-Phen-SIP Supramolecular Compounds (M = Co, Ni)

  • Zhu, Yu-Lan;Shao, Shuai;Ma, Kui-Rong;Tang, Xue-Ling;Cao, Li;Zhao, Hui-Chao
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1259-1263
    • /
    • 2012
  • Two metal compounds, $[Co(phen)_2(H_2O)_2]{\cdot}2H_2SIP{\cdot}2H_2O$ 1 and $[Ni(phen)_3]{\cdot}2H_2SIP{\cdot}3H_2O$ 2, have been obtained by incorporating 1,10-phenanthroline (phen) and 5-sulfoisophthalic acid monosodium salt ($NaH_2SIP$) ligands under hydrothermal conditions. Meanwhile, the two compounds were characterized by element analysis, IR, XRD, TG-DTA and single-crystal X-ray diffraction. Both 1 and 2 present 3D supramolecular structures via O-H${\cdots}$O hydrogen bond interactions. Luminescent properties for 1 and 2 were also studied. The compound 1 has two fluorescence emission peaks centered at 398 nm attributed to the intraligand emission from the SIP ligand and at 438 nm assigned to the combined interaction of intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand and ligand-to-metal-charge-transfer (LMCT) transitions (${\lambda}_{ex}$ = 233 nm). The compound 2 shows one emission band centered at 423 nm with a shoulder peak at 434 nm which may be originated from the intraligand ${\pi}^*-{\pi}$ transitions of the phen ligand (${\lambda}_{ex}$ = 266 nm).

1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 염산염의 결정구조 (Crystal Structure of 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt))

  • 김문집;신준철
    • 한국결정학회지
    • /
    • 제6권2호
    • /
    • pp.103-110
    • /
    • 1995
  • 1-Cyclopropyl-7-(2,7-diazabicyclo[3.3.0]oct-4-en-7-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (HCI salt)의 분자 및 결정 구조를 X-선 회절법으로 연구하였다. 이 결정의 분자식은 C20H21N3O4FCl(이하 CDD), 결정계는 단사정계이고 공간군은 C2/c이다. 단위포상수 a=28.349(2)Å, b=11.941(2)Å, c=12.806(2)Å이며 β=96.428(9)°, V=4307.8Å3, T=296(2)K, Z=8이다. 구조해석에 사용한 X-선은 CuKα선(λ=1.5418Å)을 사용하였다. 분자구조는 직접법으로 풀었으며, 최소자승법으로 정밀화하였다. 최종 신뢰도 R값은 F0>4σ(F0)인 2258개의 독립 회절데이타에 대해 R=4.96%이었다. 이 분자는 내부수소결합 O(28)-H(28)…O(25) [2.517(4)Å, 156.7(447)°]를 가지고 있으며, 분자간의 결합은 van der Waals 힘으로 결합되어 있다.

  • PDF

Salicylaldehyde-4-morpholinothiosemicarbazone의 결정 및 분자구조 (The Crystal and Molecular Structure of Salicylaldehyde-4-morpholinothiosemicarbazone)

  • 구정회;김훈섭;안중태
    • 대한화학회지
    • /
    • 제21권1호
    • /
    • pp.3-15
    • /
    • 1977
  • Salicylaldehyde-4-morpholinothiosemicarbazone, $C_{12}H_{15}O_2N_3S$, 결정은 직각비등축정계에 속하며 공간군은 $Pna2_1$이다. 단위세포에는 4개의 분자가 포함되면 세포 길이는 a = 11.85(5), b = 15.45(5), c = 7.18(3)${\AA}$이다. 농도는 multiple-film equi-inclination Weissenberg 사진으로부터 3차원적 농도 데이타를 얻어 목측법에 의하여 측정하였다. 결정구조는 Patterson 및 Fourier법으로 해명하였으며 구조의 정밀화는 block-diagonal 최소자승법으로 하였으며 R값은 1064개의 반사에 대하여 0.11이었다. 몰포린 고리는 의자형이며 1분자내의 몰포린 고리와 황원자를 제외한 원자들은 대략 한 평면을 이룬다. 수산화기의 산소원자는 질소원자와 2.67${\AA}$의 거리로 $O-H{\cdot}{\cdot}{\cdot}N$형 수소결합을 하고 있고 분자간에는 van der Waals 접촉으로 연결되어 있다.

  • PDF

Preparation of Si/C Anode with PVA Nanocomposite for Lithium-ion Battery Using Electrospinning Method

  • Choi, Sung Il;Lee, Ye Min;Jeong, Hui Cheol;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Kim, Yong Ha;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • 제56권1호
    • /
    • pp.139-142
    • /
    • 2018
  • Silicon (Si) is a promising anode material for next-generation lithium ion batteries (LIBs) because of its high capacity of 4,200 mAh/g ($Li_{4.4}Si$ phase). However, the large volume expansion of Si during lithiation leads to electrical failure of electrode and rapid capacity decrease. Generally, a binder is homogeneously mixed with active materials to maintain electrical contact, so that Si needs a particular binding system due to its large volume expansion. Polyvinyl alcohol (PVA) is known to form a hydrogen bond with partially hydrolyzed silicon oxide layer on Si nanoparticles. However, the decrease of its cohesiveness followed by the repeated volume change of Si still remains unsolved. To overcome this problem, we have introduced the electrospinning method to weave active materials in a stable nanofibrous PVA structure, where stresses from the large volume change of Si can be contained. We have confirmed that the capacity retention of Si-based LIBs using electrospun PVA matrix is higher compared to the conservative method (only dissolving in the slurry); the $25^{th}$ cycle capacity retention ratio based on the $2^{nd}$ cycle was 37% for the electrode with electrospun PVA matrix, compared to 27% and 8% for the electrodes with PVdF and PVA binders.

$CaF_2$ 박막의 전기적, 구조적 특성 (Eelctrical and Structural Properties of $CaF_2$Films)

  • 김도영;최석원;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제11권12호
    • /
    • pp.1122-1127
    • /
    • 1998
  • Group II-AF_2$films such as $CaF_2$, $SrF_2$, and $BaF_2$ have been commonly used many practical applications such as silicon on insulatro(SOI), three-dimensional integrated circuits, buffer layers, and gate dielectrics in filed effect transistor. This paper presents electrical and structural properties of fluoride films as a gate dielectric layer. Conventional gate dielectric materials of TFTs like oxide group exhibited problems on high interface trap charge density($D_it$), and interface state incorporation with O-H bond created by mobile hydrogen and oxygen atoms. To overcome such problems in conventional gate insulators, we have investigated $CaF_2$ films on Si substrates. Fluoride films were deposited using a high vacuum evaporation method on the Si and glass substrate. $CaF_2$ films were preferentially grown in (200) plane direction at room temperature. We were able to achieve a minimum lattice mismatch of 0.74% between Si and $CaF_2$ films. Average roughness of $CaF_2$ films was decreased from 54.1 ${\AA}$ to 8.40 ${\AA}$ as temperature increased form RT and $300^{\circ}C$. Well fabricated MIM device showed breakdown electric field of 1.27 MV/cm and low leakage current of $10^{-10}$ A/$cm^2$. Interface trap charge density between $CaF_2$ film and Si substrate was as low as $1.8{\times}10^{11}cm^{-2}eV^{-1}$.

  • PDF

$^{15}$N NMR Relaxation Study of the Catalytic Residues in Y14F Mutant Ketosteroid Isomerase

  • Yoon, Ye-Jeong;Lee, Hyeong-Ju;Kim, Chul;Lee, Hee-Cheon
    • 한국자기공명학회논문지
    • /
    • 제8권2호
    • /
    • pp.77-85
    • /
    • 2004
  • $^1$H-detected $^{15}$N NMR was employed to investigated the effect of mutation (Y14F) on the dynamic properties of catalytic residues in ${\Delta}^5$-3- ketosteroid isomerase (KSI) from Conamonas testosteroni. In particular, the backbone dynamics of the catalytic residues have been studied in free enzyme and its complex with a steroid ligand, 19-nortestosterone hemisuccinate, by $^{15}$N relaxation measurements. The relaxation data were analyzed using the model-free formalism to extract the model-free parameters (S$^2$, ${\tau}_e$, and R$_{ex}$). The results show that the mutation causes a significant decrease in the order parameter (S$^2$) for the catalytic residues of free Y14F KSI, presumably due to breakdown of the hydrogen bond network by mutation. In addition, the order parameters of Phe-14 and Asp-99 increased slightly upon ligand binding, indicating a slight restriction of the high-frequency (pico- to nanosecond) internal motions of the residues in the complexed Y14F KSI, while the order parameter of Tyr-55 decreased significantly upon ligand binding.

  • PDF

고리형 헥사펩티드의 형태 및 5,5-디페닐하이덴토인에 의한 양이온 전달방해에 관한 이론적 연구 (Theoretical Studies on Conformation of Cyclic Hexapeptides and Blocking for the Cation Transport by 5,5-diphenylhydantoin)

  • 양기열;구인선;이익춘;손창국
    • 대한화학회지
    • /
    • 제36권4호
    • /
    • pp.523-535
    • /
    • 1992
  • ECEPP/2 및 MM2 방법을 이용하여 고리형 헥사펩티드의 형태 및 알칼리 금속 양이온과의 착물형성 그리고 DPH에 의한 양이온 전달방해를 이론적으로 살펴보았다. 착물을 형성하지 않은 고리형 펩티드에 대하여 여러 가지 안정한 형태가 얻어졌으며, 대부분의 아미드 수소원자는 카르보닐 산소와 분자내 수소결합을 이루고 있어 조밀한 구조를 나타내었다. 펩티드와 Na$^+$ 이온 및 DPH간의 착물형성에너지는 각각 -60kcal/mol 및 -18kcal/mol이었다. 그러나 헥사펩티드의 국부최소에너지 구조들에는 금속 양이온을 결합할 수 있는 공동이 존재하지 않았고 공동이 존재하는 헥사펩티드의 에너지는 본 연구의 최저에너지 구조보다 10kcal/mol 정도 높은 에너지를 주었으며, 이러한 에너지 차이와 금속 양이온의 탈수 과정을 고려하면 DPH에 의한 양이온 전달방해를 설명할 수 있었다. 또한 DPH와 결합하는데 있어서의 가장 중요한 아미노산 잔기는 글리신이었으며 이를 사코신(N-메틸 글리신) 으로 치환할 때 양이온 전달이 저해되는 실험적 사실을 설명할 수 있었다.

  • PDF

Reactions, Hydrogenation and Isomerization of Unsaturated Esters with a Rhodium(I)-Perchlorato Complex

  • Jeong Hyun Mok;Chin Chong Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권6호
    • /
    • pp.468-471
    • /
    • 1986
  • The isolated products from the reactions of $Rh(ClO_4)(CO)(PPh_3)_2$ (1) with CH_2$ = $CHCO_2C_2H_5$ (2) and trans-$CH_3CH$ = $CHCO_2C_2H_5$ (3) contain 80∼ 90% of $[Rh(CH_2 = CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ (4) and [Rh(trans-$CH_3CH = CHCO_2C_2H_5(CO)(PPh_3)_2]ClO_4$ (5), respectively where 2 and 3 seem to be coordinated through the carbonyl oxygen. It has been found that complex 1 catalyzes the isomerization of $CH_2 = CH(CH_2)_8CO_2C_2H_5$ (6) to $CH_3(CH_2)_nCH = CH(CH_2)_{7-n}CO_2C_2H_5$ (n = 0∼7) under nitrogen at 25$^{\circ}C$. The isomerization of 6 is slower than that of $CH_2 = CH(CH_2)_9CH_3$ to $CH_3(CH_2)_nCH$ = $CH(CH_2)_{8-n}CH_3$ (n = 0∼8), which is understood in terms of the interactions between the carbonyl oxygen of 6 and the catalyst. It has been also observed that complex 1 catalyzes the hydrogenation of 2, 3, 6, trans-$C_6H_5CH = CHCO_2C_2H_5$ (7), $CH_3(CH_2)_7CH = CH(CH_2)_7CO_2C_2H_5$ (8) and $CH_2 = CH(CH_2)_9CH_3$ (9), and the isomerization (double bond migration) of 6 and 9 under hydrogen at 25$^{\circ}C$. The interactions between the carbonyl oxygen of the unsaturated esters and the catalyst affect the hydrogenation in such a way that the hydrogenation of the unsaturated esters becomes slower than that of simple olefins.