• Title/Summary/Keyword: Hydrogen absorption

Search Result 402, Processing Time 0.028 seconds

Fabrication and loss measurement of $P_2O_5-SiO_2$ optical waveguides on Si (Si을 기판으로한 $P_2O_5-SiO_2$ 광도파로의 제작 및 손실측정)

  • 이형종;임기건;정창섭;정환재;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.258-265
    • /
    • 1992
  • A low loss optical waveguide of $P_{2}O_{5}-SiO_{2}$on Si substrate is produced by using the chemical vapour deposition method of $SiO_2$ thin films used in Si technology. Propagation loss of the waveguide layer was 1.65 dB/cm as produced and reduced down to 0.1 dB/cm after heat treatment at $1100^{\circ}C$. By using laser lithography and reactive ion etching method $P_{2}O_{5}-SiO_{2}$ waveguide was produced and subsequently annealed at $1100^{\circ}C$.As a result of this annealing the shape of the waveguide core was changed from rectangular to semi-circular form, and the propagation loss was reduced as down to 0.03 dB/cm at 0.6328$\mu$m and 0.04dB/cm at 1.53$\mu$m. We think that the mechanism of the reduction in propagation loss during the heat treatment is the following: 1) The hydrogen bonding in waveguide layer, which causes absorption loss, is dissociated and diffused out. 2) The roughness of the interface and the micro-structure of the waveguide layer is removed. 3) The irregularities in the cross-sectional shape of the waveguide which was induced during the lithographic process were disappeared by flowing of the waveguide core.

  • PDF

Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

  • de Wit, J.H.W.;van den Brand, J.;de Wit, F.M.;Mol, J.M.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.50-60
    • /
    • 2008
  • The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. In addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond with the epoxy coating. Two routes for improvement of adhesion are finally decribed including an interphasial polymeric thin layer and a treatment in boiling water of the substrate before coating takes place. The adhesion properties were finely also studied as a function of the Mg content of the alloys. It was shown that an enrichment of Mg in the oxide could take place when Mg containing alloys are heat-treated. It is expected that for these alloys the (hydr)oxide fraction also depends on the pre-treatment and on the distribution of magnesium as compared to the aluminium hydroxides, with a direct impact on adhesive properties.

Mossbauer Studies of the $H_2$ Reduction Effects On Magnetic Properties of Sr-Ba Substituted Hexgonal Ferrite (치환형 Sr-Ba 육방 페라이트들의 자기적 성질에 수소환원이 미치는 효과에 관한 Mossbauer 분광학적 연구)

  • 박재윤;권명회;이재광
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • Sr substituted materials for some barium in M-type barium ferrite powder and Co-Ti substituted Sr-Ba hexagonal ferrite powder were prepared by citrate sol-gel method and 2 MOE sol-gel method these hexaferrite particles were reduced for 1hr in the hydrogen gas. The reduction temperatures were varied in the range of 250 $^{\circ}C$ to 500 $^{\circ}C$. X-ray diffraction patterns were measured using diffractometer with Cu $K_{\Alhpa}$ radiation. Mossbauer absorption spectra were measured with a constant acceleration spectrometer. We have focused on studying the origin of increasing $M_s$ by M$\"{o}$ssbauer spectroscopy. Ferrite particles which were sintered at 105$0^{\circ}C$ were found to be typical magnetoplumbite structure and single phase. XRD patterns with varying the reduction temperatures in $Sr_{0.5}Ba_{0.5}Fe_{10}O_{19}$ indicates ferrites particles become composite hexaferrites containing $\alpha$-Fe at T_{red}=350 \;$^{\circ}C$$. On the otherhand, it was found that $Co^{2+}$ ions and $Ti^{4+}$ ions in $Sr_{0.7}Ba_{0.3}Fe_{10}CoTiO_{19}$ prevent from changing $Fe^{3+}$ ions to $\alpha$-Fe during the $H_2$ reduction. Comparing Mossbauer results with XRD results, we have determined most of $\alpha$-Fe are reduced from $4f_{vi}$ sites and 12k sites of $Fe^{3+}$ ions. These $\alpha$-Fe phase bring the induced anisotropy and increase saturation magnetization $M_s$.TEX>.

  • PDF

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation (초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질)

  • Kim, Jeong Hyun;Ryu, Cheol-Hui;Ji, Myungjun;Choi, Yomin;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

Review: Distribution, Lactose Malabsorption, and Alleviation Strategies of Lactose Intolerance (유당불내증(Lactose Intolerance)의 발생 원인과 경감 방안에 대한 고찰)

  • Yoon, Sung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • Milk is called an almost complete food in terms of nutrition, especially for the younger generations because it contains a number of nutrients required for growth and development. Lactose intolerance is defined as a malabsorption of lactose in the intestine with some typical symptoms of abdominal pains and bloating, and occurred at 75% of global populations, which hampers milk consumption worldwide. Lacks of milk consumption in the underdeveloped countries frequently lead to many nutrients deficiencies, so that diseases including osteoporosis, hypertension, and colon cancer are more prevalent in the recent days. Lactose in foods needs to be hydrolyzed prior to intestinal absorption. The hydrolytic enzyme responsible for splitting lactose into its monomeric forms, glucose and galactose, is called as lactase or $\beta$-galactosidase. The former is primarily used as blood sugar and energy source and the latter used in glycolipid synthesis of brain tissues in infants. Lactose is clinically diagnosed with the breath hydrogen production test as well as intestinal biopsy. Reportedly, symptoms of lactose intolerance are widely prevalent at 25% of Europeans, 50 to 80% of Hispanics, South Indians, Africans, and Jews, almost 100% of Asians and native Americans. For the adults, phenotype of lactase persistence, which is able to hydrolyse lactose, is more common in the northern Europeans, but in the other area lactase non-persistence or adult-type hypolactasia is dominant. Genetic analysis on human lactase gene continued that lactase persistence was closely related to the err site of 1390 single nucleotide polymorphism from the 5'-end. To alleviate severity of lactose intolerance symptoms, some eating patterns including drinking milk a single cup or less, consumption along with other foods, whole milk rather than skimmed milk, and drink with live yogurt cultures, are highly recommended for the lactose maldigesters. Also, delay of gastric emptying is effective to avoid the symptoms from lactose intolerance. Frequency of lactose intolerance with conventional diagnosis is thought overestimated mainly because the subjects are exposed to too much lactose of 50 g rather than a single serving amount. Thus simple and accurate diagnostic method for lactose intolerance need to be established. It is thought that fermented milk products and low- or free lactose milks help improve currently stagnant milk consumption due to lactose intolerance which contributes to major barrier in milk marketing especially in Asian countries.

  • PDF

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Effects of Paper Sludge Application on the Chemical Properties of Paddy Soil and Growth of Paddy Rice II. Effects of Paper Sludge Application on the Seasonal Variations of Humus in Paddy Soil (제지(製紙)슬러지의 시용(施用)이 논 토양(土壤)의 화학성(化學性)과 수도생육(水稻生育)에 미치는 영향(影響) II. 토양중(土壤中) 부식형태(腐植形態)에 미치는 슬러지의 영향(影響))

  • Heo, Jong-Soo;Kim, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1986
  • To investigate the effects of paper sludge on the seasonal variations of soil humus, paper sludges were applied to the pots at the rates of 600㎏/10a which was either preadjusted C/N ratio to 30 : 1 or not adjusted. The effects were compared with those of control. 1) The contents of ether soluble materials, resins, water soluble polysaccharides, hemicellulose, cellulose, ligno-protein, humic acid and fulvic acid were higher in the sludge treated soil than in the control, furthermore, the content of ligno-protein had positive correlation with that of organic nitrogen in soil. 2) Optical density of UV and visible spectra of humic acid obtained from all the treated soil was decreased with increasing wavelength. In functional groups of humic acid, phenolic-OH/alcoholic-OH ratio was slightly higher in the sludge treated soil than in the control. The types of humic acid in all treated soil were P and Rp types. 3) The infrared spectra of humic acid extracted from the soil were characterized by main absorption bands in the regions of $3, 400cm^{-1}$(H-bonded OH), $2,900cm^{-1}$ (aliphatic C-H stretching), $1,630cm^{-1}$ (aromatic C=C and/or H-bonded C=O) and $1,050cm^{-1}$ (Si-O of silicate impurity).

  • PDF

Treatment of Malodorous Waste Air by a Biofilter Process Equipped with a Humidifier Composed of Fluidized Aerobic and Anoxic Reactor (폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정을 이용한 악취폐가스의 처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • In this research, a biofilter system equipped with a biofilter process and a humidifier composed of a fluidized aerobic and an anoxic reactor, was constructed to treat odorous waste air containing hydrogen sulfide, ammonia and VOC, frequently generated from pig and poultry housing facilities, compost manufacturing factories and publicly owned facilities. Its optimum operating condition was revealed and discussed. In the experiment of complex feed, the ammonia of fed-waste air was removed by ca. 75% and more than 20% at the stage of the humidifier and the biofilter, respectively. The toluene of the fed-waste air was removed by ca. 20% and more than 70% at the stage of the humidifier and the biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of the humidifier and the biofilter, respectively. In addition, hydrogen sulfide was almost absorbed at the stage of the humidifier so that it was not detected at the biofilter process. In the experiment of ammonia-containing feed, the ammonia of fed-waste air was removed by ca. 65% and 35% at the stage of the humidifier and the biofilter, respectively. Its removal efficiency of ammonia at the stage of the humidifier was 10% less than that in the experiment of complex feed, due to no supply of such carbon source as toluene required in the process of denitrification. In the experiments of complex feed, ammonia-containing feed with and without (instead, glucose) the addition of yeast extract, the absorption rates of ammonia-nitrogen were ca. 0.28 mg/min, 0.23 mg/min and 0.27 mg/min, respectively. The corresponding denitrification rates in the anoxic reactor were 0.42 mg/min, 0.55 mg/min and 0.27 mg/min, respectively. In addition, in the modeling of bubble column(the fluidized aerobic reactor of the humidifier) process, the value of specific surface area(a) of bubbles multiplied by enhanced mass transfer coefficient (E $K_y$) was evaluated to be 0.12/hr.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Biopolymer Amended Soil Reduces the Damages of Zn Excess in Camlina sativa L. (토양 내 바이오폴리머 혼합에 의한 Camelina sativa L.의 Zn 과잉 스트레스 피해 경감 효과)

  • Shin, Jung-Ho;Kim, Hyun-Sung;Kim, Eunsuk;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.262-273
    • /
    • 2020
  • Amending biopolymers such as β-glucan (BG) and Xanthan gum (XG) generally enhances soil strength by ionic and hydrogen bonds between soil particles. Thus, biopolymers have been studied as eco-friendly construction materials in levees. However, physiological responses of plants grown on soil amended with biopolymers are not fully understood. This study focuses on the effects of biopolymers on the growth of Camelina sativa L. (Camelina) under excess zinc (Zn) stress. The optimal concentrations of BG and XG were confirmed to have a 0.5% ratio in soil depending on the physiological parameters of Camelina under excess Zn stress. The Zn binding capacity of biopolymers was investigated using 1,5-diphenylthiocarbazone (DTZ). The reduction of Zn damage in Camelina was evaluated by analyzing the Zn content and expression of heavy metal ATPase (HMA) genes under excess Zn stress. Amendments of BG and XG improved Camelina growth under excess Zn stress. In DTZ staining and ICP-OES analysis, Camelina grown on BG and XG soil showed less Zn uptake than normal soil under excess Zn stress. The Zn-inducible CsHMA3 gene was not stimulated by either BG or XG amendment under excess Zn stress. Moreover, both BG and XG amendments in soil exhibit Zn-stress mitigation similar to that of Zn-tolerant CsHMA3 overexpres sed Camelina. These results indicate that biopolymer-amended soils may influence the prevention of Zn absorption in Camelina under excess Zn stress. Thus, BG and XG are proven to be suitable materials for levee construction and can protect plants from soil contamination by Zn.