• Title/Summary/Keyword: Hydrogen Supply System

Search Result 180, Processing Time 0.021 seconds

A Study on the Feasibility of IGCC under the Korean Electricity Market (국내 전력거래제도하에서 IGCC 사업성 확보를 위한 정책 제언)

  • Ko, Kyung-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.118-127
    • /
    • 2011
  • An IGCC was evaluated as one of the next generation technologies that would be able to substitute for coal-fired power plants. According to "The 4th Basic Plan of Long-term Electricity Supply & Demand" which is developed by the Electricity Business Acts, the first IGCC will be operated at 2015. Like other new and renewable energy such as solar PV, Fuel cell, The IGCC is considered as non-competitive generation technology because it is not maturity technology. Before the commercial operation of an IGCC in our electricity market, its economic feasibility under the Korean electricity market, which is cost-based trading system, is studied to find out institutional support system. The results of feasibility summarized that under the current electricity trading system, if the IGCC is considered like a conventional plant such as nuclear or coal-fired power plants, it will not be expected that its investment will be recouped within life-time. The reason is that the availability of an IGCC will plummet since 2016 when several nuclear and coal-fired power plants will be constructed additionally. To ensure the reasonable return on investment (NPV>0 IRR>Discount rate), the availability of IGCC should be higher than 77%. To do so, the current electricity trading system is amended that the IGCC generator must be considered as renewable generators to set up Price Setting Schedule and it should be considered as pick load generators, not Genco's coal fired-generators, in the Settlement Payment.

Development of a Welding Machine System Using Brown Gas by Improved Water Electrolyzation

  • Lee Yong-Kyun;Lee Sang-yong;Jeong Byung-Hwan;Mok Hyung-Soo;Choe Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2005
  • Throughout the world, studies on the water energization are currently under way. Of those, Brown gas, which is generated through the electrolyzation of water and is a mixed gas of the constant volume of 2 parts hydrogen to 1 part oxygen, has better characteristics in terms of economy, energy efficiency, and environmental affinity than those of acetylene gas and LPG (Liquefied Petroleum Gas) used for existing welding machines. This paper analyzes the characteristics of Brown gas and presents methods for increasing the generating efficiency of Brown gas by designing a power supply to deliver power to a water-electrolytic cell and designing a cylindrical electrode to improve the efficiency of the electrolyzer needed for water electrolyzation. Based on the above the methods, a welding machine using Brown gas is developed. And the generation efficiency of Brown gas is measured tinder different conditions (duty ratio, frequency and amplitude) of supplied power.

A Study on Optimal Hydrogen Supply System for materialization of Hydrogen Economy (수소경제 실현을 위한 수소최적공급시스템 연구)

  • Cho, Sang-Min;Boo, Kyung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.759-762
    • /
    • 2007
  • 본 연구는 부문별 수소 및 연료전지의 수요량을 산정하고 원활한 수소공급을 위한 수소제조원의 최적믹스를 바탕으로 수소 도입 이후의 에너지믹스를 제시하는 것을 목표로 하고 있다. BaU 전망은 에너지경제연구원의 전망을 바탕으로 하였으며 기준안, 고유가안, 저유가안의 세가지 시나리오를 설정하여 각 시나리오별 분석을 수행하였다. 기준안에 따르면 수소 및 연료전지는 2015년 시장에 도입되어 2031년 5%의 시장보급률을 확보한 이후 보급률이 급격히 증가하는 것으로 나타났다. 수소 연료전지 시장중 특히 수송부문이 선도적 역할을 할 것으로 기대되며 FCV 보급대수는 2040년 1,132만대로 전체 자동차 시장의 48.4%를 차지할 전망이다. 최종에너지 중 수소의 비중은 2040년 8.7%에 이를 것으로 예측되며 수소의 도입으로 인해 1차에너지 중 신${\cdot}$재생에너지 비중이 BaU 대비 약 5.1%p 증가한 12.1%에 이를 것으로 분석되었다. 총 수소수요량은 777만톤에 이를 전망이다. 고유가안에서는 수소 및 연료전지가 2012년에 시장에 도입되는 것으로 가정하였으며 2040년 FCV 보급대수는 1,633만대에 이를 전망이다. 최종에너지 중 수소 비중은 11.5%에 이를 것으로 예상되며 1차에너지 신${\cdot}$재생에너지 비중은 11.6%로 분석되었다. 수소수요량은 1,015만톤으로 전망된다. 저유가안에서는 수소 및 연료전지가 2018년 도입되는 것으로 가정 하였다. 이 경우 2040년 FCV는 641만대가 보급되어 자동차 등록대수의 27.4%를 차지할 것으로 전망된다. 최종에너지 중 수소 비중과 1차에너지중 신${\cdot}$재생에너지 비중은 각각 5.5%, 9.1%에 이를 것으로 분석되었으며 수소수요량은 496만톤으로 전망된다.

  • PDF

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

Removal of High Odor Concentration with Biofilter using Mixture of Earthworm Cast and Distillery Sludge (지렁이 분변토와 주정슬러지 혼합 배양액을 이용한 Biofilter에서의 고농도 악취제거)

  • Park, Jong-Woong;Jang, Seg-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.127-136
    • /
    • 2014
  • Objectives: This study was conducted to investigate the removal of high odor concentration from swine wastewater treatment facility by full scale biofilter using liquid with deodorant mixed with earthworm cast and distillery sludge. Methods: The supply of the culture liquid to the microorganism on the media in the biofilter increases the activity and growth of biomass. The experimental equipment was biofilter tower with treatment capacity of 90 m 3/min. The experimental conditions included gas flow of $60m^3/min$, retention time of 20 sec, and gas/liquid ratio of 67. Results: With changing season from winter to summer, the inlet odor concentration of ammonia increased from 2.5 ppm to 29 ppm, and of hydrogen sulfide from 21 ppm to 91 ppm, respectively. The odor treatment system with biofilter using the culture liquid was stable when the high loading rate increased and showed excellent removal grade with an average of 96.7% for ammonia, and an average of 93.7% for hydrogen sulfide. The pH and SCOD in the recirculating culture liquid near the bottom of the biofilter tower decreased with operation time, but its influence on the odor removal rate was negligible, because the organic matter (SCOD) was replaced by some culture liquid supplied 2-4 times per day. Conclusions: The biofilter using culture liquid could successfully remove high odor concentration which was generated from swine wastewater treatment facility.

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

Hydrogen production with high temperature solar heat thermochemical cycle using NiFe2O4/m-ZrO2 device (NiFe2O4/m-ZrO2 device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Shin, Il-Yoong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • Two-step thermochemical cycle using ferrite-oxide($Fe_3O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The $m-ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30mL.

Study on the Design Parameters of a Heat Exchange Steam Reformer (HESR) using CFD (전산유체해석을 이용한 열교환형 수증기 개질기의 디자인 파라미터 연구)

  • YANG, CHANUK;LEE, YULHO;PARK, SANGHYUN;YANG, CHOONGMO;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, CFD model for a Heat Exchange Steam Reformer (HESR) used for a 10kW SOFC system is developed for the design optimization of the HESR. The model is used to explore the effect of design parameters on the performance of the HESR. In the HESR, heat is delivered from the hot gas channel to the fuel channel to supply the heat required for the fuel reforming. In the fuel channel where the fuel is reformed, thermo-fluid dynamics, heat transfer, and chemical reaction are considered to predict the performance of the reformer. The model is validated with experimental data within 2~3% error. The validated model is used for the parametric study of the HESR design. Channel length, channel diameter, and flow direction are selected as the design parameters. The effects of the HESR design parameters on the outlet temperature, outlet H2 mole fraction, and pressure drop across the reformer are presented using the model.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

The TANDEM Euratom project: Context, objectives and workplan

  • C. Vaglio-Gaudard;M.T. Dominguez Bautista;M. Frignani;M. Futterer;A. Goicea;E. Hanus;T. Hollands;C. Lombardo;S. Lorenzi;J. Miss;G. Pavel;A. Pucciarelli;M. Ricotti;A. Ruby;C. Schneidesch;S. Sholomitsky;G. Simonini;V. Tulkki;K. Varri;L. Zezula;N. Wessberg
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.993-1001
    • /
    • 2024
  • The TANDEM project is a European initiative funded under the EURATOM program. The project started on September 2022 and has a duration of 36 months. TANDEM stands for Small Modular ReacTor for a European sAfe aNd Decarbonized Energy Mix. Small Modular Reactors (SMRs) can be hybridized with other energy sources, storage systems and energy conversion applications to provide electricity, heat and hydrogen. Hybrid energy systems have the potential to strongly contribute to the energy decarbonization targeting carbon-neutrality in Europe by 2050. However, the integration of nuclear reactors, particularly SMRs, in hybrid energy systems, is a new R&D topic to be investigated. In this context, the TANDEM project aims to develop assessments and tools to facilitate the safe and efficient integration of SMRs into low-carbon hybrid energy systems. An open-source "TANDEM" model library of hybrid system components will be developed in Modelica language which, by coupling, will extend the capabilities of existing tools implemented in the project. The project proposes to specifically address the safety issues of SMRs related to their integration into hybrid energy systems, involving specific interactions between SMRs and the rest of the hybrid systems; new initiating events may have to be considered in the safety approach. TANDEM will study two hybrid systems covering the main trends of the European energy policy and market evolution at 2035's horizon: a district heating network and power supply in a large urban area, and an energy hub serving energy conversion systems, including hydrogen production; the energy hub is inspired from a harbor-like infrastructure. TANDEM will provide assessments on SMR safety, hybrid system operationality and techno-economics. Societal considerations will also be encased by analyzing European citizen engagement in SMR technology safety.