• Title/Summary/Keyword: Hydrogen Production as Surplus Energy

Search Result 4, Processing Time 0.022 seconds

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Modeling of SPE cell for hydrogen production using EMTDC (EMTDC를 이용한 수소제조용 SPE 셀의 모델링)

  • Kim Se-Heon;Park Min-won;Yu In-Keun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1495-1497
    • /
    • 2004
  • This paper presents an effective modeling scheme of SPE cell system for hydrogen production. As oxygen and hydrogen produced by water electrolysis using SPE are high purity, we can use oxygen in biomedical and hydrogen could be used in many ways. Recently, it is under the eye as a surplus power storage system. PSCAD/EMTDC model of SPE cell system for hydrogen production to efficiently utilize Solar cell energy which produces effectively hydrogen energy is showed in this paper. The simulated results are then verified by comparing them with the actual values obtained from the data acquisition system. Authors are sure that it is a useful method to the researchers who study SPE cell system for hydrogen production.

  • PDF

EMDTC model Development of Solar-Powered Hydrogen Production system (PV-SPE 시스템 최적 운전 기법에 관한 연구)

  • Lee, Dong-Han;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.274-276
    • /
    • 2005
  • This paper present an effective modeling scheme of SPE cell system for hydrogen production. As oxygen and hydrogen produced by water electrolysis using SPE are high purity, we can use oxygen in biomedical and hydrogen could be used in many ways. Recently, it is under the eye as a surplus power storage system. PSCAD/EMTDC model of SPE cell system for hydrogen production to efficiently utilize solar cell energy is showed in this paper. The simulated results are then verified by comparing them with the actual values obtained from the data acquisition system. Authors are sure that it is a useful method to the researchers who study SPE cell system for hydrogen production.

  • PDF

A Study on the Production of Hydrogen Energy According to Installed Capacity of Energy Storage System on Campus (대학 캠퍼스 내 에너지저장장치 연계에 따른 잉여 수소에너지 생산에 관한 연구)

  • Choi, Bong-Gi;Jun, Jong-Hyun;Kim, Sung-Yul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.94-99
    • /
    • 2018
  • Depending on how the energy storage system(ESS) is used in a system that can construct a microgrid by using an independent power source such as campus, surplus power can be generated that can not be charged to the ESS. For example, assuming that heat is supplied by a fuel cell in the case of a system in which thermal self-sustaining is prioritized, the fuel cell capacity required differs depending on the heat load. The amount of surplus power that can not be stored in the ESS will appear differently depending on the load operation of the fuel cell for each cycle. This power is hydrogenated through a water electrolytic device to present the amount of hydrogen energy that can be operated for each cycle. Therefore, this paper propose the possibility of utilizing University campus as a hydrogen station.