• 제목/요약/키워드: Hydrogen Fluoride

Search Result 123, Processing Time 0.032 seconds

A Study on the Chemical Treatments Suitable for the Simple Mechanical Manipulation During the Recycling Process of FRP Waste from Ships (폐 선박의 FRP를 재활용 과정에서 용이한 기계적 조작을 위한 화학적 처리 방법에 관한 연구)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.55-59
    • /
    • 2009
  • As one of the methods for recycling the FRP from the small and medium waste ships, separation of roving layer from the mat has some merits in a sense of the recycling energy and the environmental effects. Similar characteristics, however, between the roving and the mat even with different ratio of the resin and the glass and the thickness of the roving, much thinner than the mat, make the mechanically automatic differentiation difficult. In this study spectrochemical differentiation between the two layers has been made using (1) boiling concentrated sulfuric acid which can dissolve the resin in the FRP layer, (2) methanol and isopropanol solution saturated with KOH which can dissolve the glass, or (3) hydrogen fluoride(HF) solution which can reacts with $SiO_2$ fragments of the glass. Furthermore coloring water-soluble dye following the HF treatment makes the roving layer more distinguishable photo-physically.

  • PDF

A Study on the Fluorination of Pentachloroethane (Pentachloroethane의 불소화 반응에 관한 연구)

  • Park, Kun-You;Kwon, Young-Soo;Kim, Hoon-Sik;Lee, Sang-Deuk;Lee, Byung-Gwon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.318-323
    • /
    • 1993
  • Pentachloroethane($CHCl_2CCl_3$) was synthesized and reacted with hydrogen fluoride using antimony pentahalide catalyst($SbCl_xF_y$) in order to manufacture HCFC-123$(CF_3CHCl_2)$, a potential CFC-11$(CFCl_3$) substitute candidate. Products analyses showed the fluorination proceeds through fluorine-chlorine exchanges between $HF/SbCl_xF_y$ and $SbCl_xF_y/CCl_3CHCl_2$ respectively. The degree of fluorination of $CCl_3$ group in pentachloroethane was greatly affected on the reaction temperature, but the effect of catalyst concentration was relatively small. Mechanistic study was also performed to elucidate the pathway to the formation of side-products such as $CCl_3CFCl_2$, $CFCl_2CFCl_2$ and $CF_2ClCFCl_2$.

  • PDF

Economic Analysis of Providing Personal Protective Equipment for Residents near Chemical Plants (화학공장 인근 주민의 개인보호장구 지급에 관한 경제성 분석)

  • Han, Don-Hee;Chang, Young-Jae;Park, Min Soo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.5
    • /
    • pp.431-437
    • /
    • 2017
  • Objectives: To protect the health and safety of residents during chemical accidents, the governmental authorities need to provide personal protective equipment (PPE) to citizens who desire it. This study aims to investigate residents'awareness of PPE and perform an economic analysis on providing PPE to residents near chemical plants prior to the establishment of a related law. Methods: This study was carried out through a questionnaire completed by 600 residents composed of items such as residents'awareness of PPE, what type of PPE they need, and how to purchase PPE. Economic analysis (cost-benefit analysis) was conducted on providing PPE to residents near chemical plants on basis of the Gumi City hydrogen fluoride accident of 2012. Results: The results of the questionnaire showed that most residents recognized the need for PPE preparedness for chemical accidents, in particular, for respirators. The level of expense that respondents were prepared to shoulder to share the burden was $25. Except for chemicals of hazard level 2, the benefit of all kinds of chemical accident preparedness considerably exceeded costs in the cost-benefit analysis on providing PPE. An estimated government budget of $20 million per year would be required to provide PPE (hood-type mask) for all residents within a one-kilometer radius of chemical plants in Korea, but only $5.8 million when residents share the expenses. Conclusion: The results of this study suggest that programs for providing PPE for residents near chemical plants should be established by law.

Degradation of Polymer Electrolyte Membrane under OCV/Low Humidity Conditions (OCV / 저가습 조건에서 고분자전해질 막 열화)

  • Kim, Taehee;Lee, Junghun;Lee, Ho;Lim, Tae Won;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.345-350
    • /
    • 2007
  • During PEMFC operation, OCV(open circuit voltage) and low humidity conditions accelerate the degradation of perfluorosulfonic acid membrane. There have been no studies that clearly explain why these conditions accelerate the membrane degradation. In this study, the hydrogen permeability through the membrane, I-V polarization of MEA, fluoride emission rate(FER) and $H_2O_2$ concentration in condensed water were measured during cell operation under OCV and low relative humidity(RH). The experimental results were evaluated with oxygen radical mechanism the most commonly known for membrane degradation. It seems that low RH of anode is a good condition for $H{\cdot}$ radical formation on the Pt catalyst and the OCV condition accelerate the $H{\cdot}$ to form $HO_2{\cdot}$ radical attacking the polymer membrane.

Influence of pain-relieving therapies on inflammation and the expression of proinflammatory neuropeptides after dental bleaching treatment

  • da Silva, Livia Maria Alves Valentim;Cintra, Luciano Tavares Angelo;de Oliveira Gallinari, Marjorie;Benetti, Francine;Rahal, Vanessa;Ervolino, Edilson;de Alcantara, Sibele;Briso, Andre Luiz Fraga
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.20.1-20.14
    • /
    • 2020
  • Objectives: To minimize the tooth sensitivity caused by in-office bleaching, many dentists use non-steroidal anti-inflammatory drugs and topical desensitizing gels containing potassium nitrate and sodium fluoride. This study aimed to evaluate the influence of these substances on inflammation and the expression of substance P and calcitonin gene-related peptide in pulp nerve fibers. Materials and Methods: Seventy-two rats were divided into 6 groups as follows: GI, control; GII, only dental bleaching; GIII, only ibuprofen; GIV, ibuprofen administered 30 minutes before and after the bleaching treatment and every 12 hours until the analysis; GV, only topical application of a desensitizing agent; and GVI, topical application of a desensitizing agent before dental bleaching. Placebo gel was applied to the upper left jaw and the bleaching agent was applied to the upper right jaw in all groups. Subsequently, the groups were divided into 3 subgroups based on the time of analysis: 0, 24, and 48 hours after bleaching (n = 8). The rats were euthanized and the maxillae were processed and evaluated by histopathological and immunohistochemical analyses. The data were analyzed using the Kruskal-Wallis test, followed by the Dunn test (p < 0.05). Results: In the bleaching groups, the inflammatory process and expression of neuropeptides decreased over time. The animals in which a desensitizing agent was applied showed better results within 24 hours. Conclusions: The use of a desensitizing agent had positive effects on inflammation and pain-related neuropeptide expression, minimizing the painful effects of dental bleaching treatment.

A Study For The Simple Method In Dividing The Layers of Fiber-reinforced Plastic (폐 FRP선박의 재활용공정에서 용이한 면포추출공정을 위한 화학적 처리 방법에 관한 연구)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2010
  • As one of the methods for recycling the FRP used for the small and medium-sized waste ships, separation of the roving layer from the mat has some merit in a sense of the recycling energy and the environmental effects. Similar characteristics between the roving and the mat make the mechanically automatic differentiation difficult. They, however, contain different ratio of the resin and the glass and the thickness. In this study photo physical differentiation between the two layers has been made using (1) boiling concentrated sulfuric acid which can dissolve the resin in the FRP layer and (2) hydrogen fluoride(HF) solution which can reacts with $SiO_2$ fragments of the glass. Furthermore coloring the FRP sample with water-soluble dye following the HF treatment makes the roving layer more distinguishable photophysically. The implementation of HF treatment has been successfully tested in this study.

Effects of Glass Texturing Structure on the Module Efficiency of Heterojunction Silicon Solar Cells

  • Park, Hyeongsik;Lee, Yoo Jeong;Shin, Myunghun;Lee, Youn-Jung;Lee, Jaesung;Park, Changkyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.102-108
    • /
    • 2018
  • A glass-texturing technique was developed for photovoltaic (PV) module cover glass; periodic honeycomb textures were formed by using a conventional lithography technique and diluted hydrogen fluoride etching solutions. The etching conditions were optimized for three different types of textured structures. In contrast to a flat glass substrate, the textured glasses were structured with etched average surface angles of $31-57^{\circ}$, and large aspect ratios of 0.17-0.47; by using a finite difference time-domain simulation, we show that these textured surfaces increase the amount of scattered light and reduce reflectance on the glass surface. In addition, the optical transmittance of the textured glass was markedly improved by up to 95% for wavelengths ranging from 400 to 1100 nm. Furthermore, applying the textured structures to the cover glass of the PV module with heterojunction with intrinsic thin-layer crystalline silicon solar cells resulted in improvements in the short-circuit current density and module efficiency from 39 to $40.2mA/cm^2$ and from 21.65% to 22.41%, respectively. Considering these results, the proposed method has the potential to further strengthen the industrial and technical competitiveness of crystalline silicon solar cells.

Formation of lotus surface structure for high efficiency silicon solar cell (고효율 실리콘 태양전지를 위한 lotus surface 구조의 형성)

  • Jung, Hyun-Chul;Paek, Yeong-Kyeun;Kim, Hyo-Han;Eum, Jung-Hyun;Choi, Kyoon;Kim, Hyung-Tae;Chang, Hyo-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • The reduction of optical losses in mono-crystalline silicon solar cell by surface texturing is a critical step to improve the overall cell efficiency. In this study, we have changed the sub-micrometer structure on the micrometer pyramidal structure by 2-step texturing. The Ag particles were coated on the micrometer pyramid surface in $AgNO_3$ solution, and then the etching with hydrogen fluoride and hydrogen peroxide created even smaller nano-pyramids in these pyramids. As a result, we observed that the changes of size and thickness of nano structure on pyramidal surface were determined by $AgNO_3$ concentration and etching time. Using 2-step texturing, the surface of wafers is etched to resemble the rough surface of a lotus leaf. Lotus surface can reduce average reflectance from 10% to below 3%. This reflectance is less than conventional textured wafer including anti-reflection coating.

Development of an IoT Smart Sensor for Detecting Gaseous Materials (사물인터넷 기술을 이용한 가스상 물질 측정용 스마트센서 개발과 향후과제)

  • Kim, Wook;Kim, Yongkyo;You, Yunsun;Jung, Kihyo;Choi, Won-Jun;Lee, Wanhyung;Kang, Seong-Kyu;Ham, Seunghon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.78-88
    • /
    • 2022
  • Objectives: To develop the smart sensor to protect worker's health from chemical exposure by adopting ICT (Information and Communications Technology) technologies. Methods: To develope real-time chemical exposure monitoring system, IoT (Internet of Things) sensor technology and regulations were reviewed. We developed and produced smart sensor. A smart sensor is a system consisting of a sensor unit, a communication unit, and a platform. To verify the performance of smart sensors, each sensor has been certified by the Korea Laboratory Accreditation Scheme (KOLAS). Results: Chemicals (TVOC; Total Volatile Organic Compounds, Cl2: Chlorine, HF: Hydrogen fluoride and HCN: Hydrogen cyanide) were selected according to a priority logic (KOSHA Alert, acute poisoning statistics, literature review). Notifications were set according to OEL (occupational exposure limit). Sensors were selected based on OEL and the capabilities of the sensors. Communication is designed to use LTE (Long Term Evolution) and Wi-Fi at the same time for convenience. Electronic platform were applied to build this monitoring system. Conclusions: Real-time monitoring system for OEL of hazardous chemicals in workplace was developed. Smart sensor can detect chemicals to complement monitoring of traditional workplace environmental monitoring such as short term and peak exposure. Further research is needed to expand the scope of application, improve reliability, and systematically application.

EFFECTS OF SUBINHIBITORY CONCENTRATIONS OF ANTIMICROBIAL AGENTS ON CELL SURFACE PROPERTIES AND VIRULENCE FACTORS OF MUTANS STREPTOCOCCI (아저해농도(亞沮害濃度)의 항균물질이 mutans streptococci의 세포표면성질과 독력인자에 미치는 영향)

  • Kim, Young-Jae;Hahn, Se-Hyun;Lee, Sang-Hoon;Jang, Ki-Taeg;Kim, Chol-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.605-616
    • /
    • 2004
  • Subinhibitory concentrations (sub-MICs) refer to concentrations below minimum inhibitory concentrations (MICs). The antimicrobial agents may be present at relatively high concentration, at least higher than bacterial MIC and thereafter be deserted off a surface and function at sub-MICs, perhaps by interfering with bacterial metabolism. Consequently, the aim of this study was to determine the effects of growth, in the presence of sub-MICs of antimicrobial agents, on the cell surface properties and virulence factors of mutans streptococci and to investigate the efficacy of a chemical approach in vitro. Streptococcus mutans Ingbritt and Streptococcus sobrinus 6715-7 were used. Eight antimicrobial agents (Sanguinaria extract;SG, Chlorhexidine digluconate;CHX, Fluoride;F, Propolis;PP, Hydrogen peroxide;HP, Triclosan;TC, Sodium dodecyl sulfate;SDS Cetylpyridinium chloride; CC) were diluted serially in broth to determine MICs and to compare the growth rate, acid production, hydrophobicity, adhesion activity to saliva coated hydroxyapatite, glucan synthesis and cellular aggregation of experiment groups (in the presence of sub-MICs) with those of control (in the absence of antimicrobial agents). Sub-MICs of antimicrobial agents affected the growth of cells, hydrophobicity, and adhesion of bacteria to saliva coated hydroxyapatite and glucan synthesis. They also resulted in a significant reduction in pH after 12 hours (p<0.05). By cells pretreated with proteinase K, either the aggregation induced by antimicrobial agents was completely inhibited or the aggregation titers were markedly increased. According to the results of the present study, each antimicrobial agent at sub-MICs could affect similar as its known action mechanism and could continually inhibit cariogenic bacteria at such concentrations. Thus, the use of these antimicrobial agents would be one of the effective methods to prevent dental caries.

  • PDF