• 제목/요약/키워드: Hydrogen Exhaust Pipe

검색결과 7건 처리시간 0.028초

수소기관에서 NOx 특성에 관한 연구(2) (The Study on NOx Emission for Hydrogen Fueled Engine(2))

  • 최경호
    • 한국수소및신에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2000
  • The goals of this research are to understand the $NO_x$ emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 percent basis heating value of the total fuel. The effects of exhaust gas recirculation(EGR) on $NO_x$ emission were studied. The exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: (i) the tested engine was run without backfire under 70 percent hydrogen fuel supplemented; (ii) the peak cylinder pressure was decreased with increase of EGR ratio due to the decrease of oxygen concentration in an intake pipe; and (iii) $NO_x$ emission was decreased by 77% with 30% EGR ratio. Therefore, it may be concluded that EGR is effective method to lower $NO_x$ emission in hydrogen fueled diesel engine.

  • PDF

수소기관에서의 배기가스에 관한 연구 (Study on Emission Characteristics in a Hydrogen-fueled Engine)

  • 조웅래;최경호;배석천
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.83-89
    • /
    • 2002
  • The goal of this research is to understand the NOx emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 % basis on heating value of the total input fuel. The effects of intake air temperature and exhaust gas recirculation(EGR) on NOx emission were studied. The intake air temperatures were varied from $23^{\circ}C$ to $0^{\circ}C$ by using liquid nitrogen. Also, the exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: ( i ) nitrogen concentrations in the intake pipe were increased by 30% and cylinder gas temperature was decreased by 24% as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$; ( ii ) NOx emission per unit heating value of supplied fuel was decreased by 45% with same decrease of intake air temperature; and (iii) NOx emission was decreased by 77% with 30% of EGR ratio. Therefore, it may be concluded that EGR is effective method to lower NOx emission in hydrogen fueled engine.

연료전지차용 수소배출 배관 및 배관이음매 안전성 평가를 위한 기초 연구 (The Basic Study on the Leak Test Method of the Hydrogen Exhaust Pipe for a Fuel Cell Vehicle)

  • 서호철;박경석;서경두;용기중
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.185-192
    • /
    • 2011
  • This study deals with a basic proposal to prove the safety for the exhausted fittings of the hydrogen fuel cell vehicle. First, this study was approached to numerical analysis solving to close the exact boundary condition (Axial, Bending, Lateral) and the second, this study produced the Lateral movement equipment for the vibration. For the numerical analysis, This study was considered with the exact solution of Lateral movement and the resonance effect for durability sample according to fitting positions. The second, This study was made for special equipment for displacement/gas leak and the frequency because the domestic samples were comparing with foreign fitting and foreign fitting for the hydrogen fuel cell vehicle. The result of this study was satisfied with domestic fittings for the basic reference but it need more test because of other situation for hydrogen fuel cell vehicle.

정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구 (An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber)

  • 조용석;이성욱;원상연;박영준;김득상
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.

CT-레이저흡수분광법(TDLAS) 성능향상을 위한 레이저 선폭확장 함수 최적 계수 선정에 관한 연구 (Study on Optimal Coefficients of Line Broadening Function for Performance Enhancements of CT-TDLAS)

  • 최두원;조경래;;백태실;도덕희
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.773-782
    • /
    • 2016
  • The performance of the CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is strongly dependent upon the line broadening functions. The line of the laser beam used in the TDLAS is scattered by the natural broadening, the collisional broadening and the doppler broadening. The influence of the natural broadening to the experimental spectra obtained in the TDLAS is negligible. The influences of the collisional broadening and the doppler broadening to the experimental spectra are relatively large, in high pressure gas flows and in high temperature low pressure gas flows, respectively. In this study, optimal coefficients are proposed for the doppler broadening function by using the experimental data obtained in a flat burner test. The optimal coefficients were ${\gamma}_j=0.16$ and n=0.37. Using these coefficients, the temperature and concentration distributions at the engine exhaust gas pipe have been calculated showing their validities.

SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석 (A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production)

  • 변현승;한단비;박성룡;조종표;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제31권2호
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

연료전지 자동차용 질소/응축수 통합배출시스템 및 기술 개발 (Development of the Integrated Exhaust System and Techniques of Nitrogen and Condensate for Fuel Cell Electric Vehicle)

  • 심효섭;김효섭;김재훈;권부길;이현준;김치명;박용선
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.516-524
    • /
    • 2014
  • Proper discharge of nitrogen gas and water condensate is required in a conventional fuel cell system for performance, stability and durability of fuel cell stacks. Present study covers the development of integrated unit and its functioning logic for simultaneous nitrogen gas purge and water condensate drainage in a fuel cell vehicle system. Configuration of condensate drainage pipe, purge valve and level sensor is considered and optimized in physical integration. As a key factor, discharge time is considered and optimized based on the test result of constant-current operation with various operating temperature in logic development. Consequently, derived optimal values are applied and verified in actual vehicle drive mode test. Increase of system design flexibility, weight reduction and cost reduction are anticipated with this study. Additional study for physical and logical improvement is currently being implemented.