• Title/Summary/Keyword: Hydrogen CFD

Search Result 165, Processing Time 0.028 seconds

Design of Cell Frame Structure of Unit Cell for Molten Carbonate Fuel Cell Using CFD Analysis (CFD를 통한 용융탄산염 연료전지 단위전지용 셀 프레임 구조 설계)

  • LEE, SUNG-JOO;LIM, CHI-YOUNG;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • In this study, a $100cm^2$ cell frame for a molten carbonate fuel cell was designed using CFD analysis. Electrochemical reactions, gas flow, and the heat transfer in $100cm^2$ cell frame were modeled using COMSOL Multiphysics. Two design variables such as the height of the cell frame and the length of the gas input area were determined to obtain minimized temperature distribution and uniform gas distribution. With two design parameter such as height of the cell frame and the length of the gas flow channel, the temperature difference in the cell fame was decreased to $5^{\circ}C$ and the gas uniformity in the flow channel were achieved.

CFD and Experimental Study of Gas Flow inside the Wounding Steel Pipe Fitted in Reciprocating Hydrogen Compressor (왕복동식 수소 압축기의 강관 관로 내부 가스흐름의 CFD와 실험)

  • Chung, H.S.;Rahman, M. Sq.;Lee, G.H.;Woo, J.S.;Kim, B.H.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • 전 세계적으로 급속도로 인기가 더해가고 있는 수소에너지는 높은 전환 효율성, 재생성, 친환경적인 특징을 가지며 미래의 주 에너지가 될 것이다. 왕복동식 압축기를 통과한 후의 수소 가스의 압력은 높은 맥동압을 가진다. 스너버는 압축기의 한 구성품으로 맥동압을 낮추고 수소가스의 불순물을 제거하기 위해 사용된다. 이 연구에서의 실험은 스너버 시스템에 사용된 강관의 맥동에 관해 조사하기 위해서 수행되었다. 맥동압은 12 Hz ~ 60 Hz의 모터속도에서 RMS값을 기준으로 0.1625% ~ 0.5305% 그리고 평균압력을 기준으로 0.1621% ~ 0.5277% 감소하였다. 압력손실은 RMS값을 기준으로 0.1092% ~ 1.4419%, 평균압력을 기준으로 0.1493% ~ 1.7507%로 측정되었다. CFD를 이용한 수치해석값은 실험값이 거의 비슷한 결과를 나타내고 강관 관로 내부 가스의 자세한 압력을 설명하기 위한 중요한 역할을 수행한다.

NUMERICAL ANALYSIS OF A SO3 PACKED COLUMN DECOMPOSITION REACTOR WITH ALLOY RA 330 STRUCTURAL MATERIAL FOR NUCLEAR HYDROGEN PRODUCTION USING THE SULFUR- IODINE PROCESS

  • Choi, Jae-Hyuk;Tak, Nam-Il;Shin, Young-Joon;Kim, Chan-Soo;Lee, Ki-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1275-1284
    • /
    • 2009
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed using the computational fluid dynamics (CFD) code CFX 11. The use of a directly heated decomposition reactor in conjunction with a very high temperature reactor (VHTR) allows for higher decomposition reactor operating temperatures. However, the high temperatures and strongly corrosive operating conditions associated with $SO_3$ decomposition present challenges for the structural materials of decomposition reactors. In order to resolve these problems, we have designed a directly heated $SO_3$ decomposer using RA330 alloy as a structural material and have performed a CFD analysis of the design based on the finite rate chemistry model. The CFD results show the maximum temperature of the structural material could be maintained sufficiently below 1073 K, which is considered the target temperature for RA 330. The CFD simulations also indicated good performance in terms of $SO_3$ decomposition for the design parameters of the present study.

CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas (바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산)

  • CHUN, YOUNG NAM;AN, JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.

NUMERICAL ANALYSIS OF THE HYDROGEN-STEAM BEHAVIOR IN THE APR1400 CONTAINMENT DURING A HYPOTHETICAL TOTAL LOSS OF FEED WATER ACCIDENT (APR1400의 급수완전상실사고 시 격납건물 내에서 수소와 수증기의 3차원 거동에 대한 수치해석)

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.9-18
    • /
    • 2005
  • During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by the active reaction of fuel-cladding and steam in the reactor pressure vessel and released with steam into the containment. In order to mitigate hydrogen hazards possibly occurred in the NPP containment, hydrogen mitigation system (HMS) is usually adopted. The design of the next generation NPP (APR1400) designed in Korea specifies 26 passive autocatalytic recombiners and 10 igniters installed in the containment for the hydrogen mitigation. in this study, the analysis of the hydrogen and steam behavior during a total lose of feed water (TLOFW) accident in the APR1400 containment has been conducted by using the CFD code GASFLOW. During the accident, a huge amount of hot water, steam, and hydrogen is released in the in-containment refueling water storage tank (IRWST). The current design of the APR1400 includes flap-type dampers at the IRWST vents which are operated depending on the pressure difference between inside and outside of the IRWST. it was found that the flaps strongly affects the flow structure of the steam and hydrogen in the containment. The possibilities of a flame acceleration and transition from deflagration to detonation (DDT) were evaluated by using Sigma-Lambda criteria. Numerical results indicate the DDT possibility could be heavily reduced in the IRWST compartment when the flaps are installed.

THE NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE IN TUNNEL (터널 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Ahn, Hyuk-Jin;Jung, Jae-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2010
  • In the present study, a numerical simulation for the diffusion of hydrogen leakage of FCV(Fuel Cell Vehicle) in a tunnel was performed to aid the assessment of risk in case of leakage accident. The temporal and spatial distributions of the hydrogen concentration around FCV are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of tunnel ventilation system for relieving the accumulation of the leaked hydrogen gas. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

A NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE FROM FCV IN UNDERGROUND PARKING LOT (지하주차장 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Choi, J.;Hur, N.;Lee, E.D.;Lee, K.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking lot was analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial changes of the hydrogen concentration as well as the flammable region in the parking lot were predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance in the parking lot to relieve the accumulation of the leaked hydrogen gas. The present numerical analysis can provide useful information such as the distribution of the leaked hydrogen concentration for safety of various hydrogen applications.

  • PDF

Consequence Analysis of Hydrogen Blended Natural Gas(HCNG) using 3D CFD Simulation (CFD를 활용한 수소-천연가스 혼합연료에 대한 피해영향 분석)

  • Kang, Seung-Kyu;Bang, Hyo-Jung;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 2013
  • This study evaluated comparison of the risk according to the type of fuel by three-dimensional simulation tool(FLACS). The consequence analysis of fire explosion and jet-fire was carried out in the layout of a typical high-pressure gas filling stations using CNG, hydrogen and 30%HCNG. Under the same conditions, hydrogen had a 30kPa maximum overpressure, CNG had a 0.4kPa and HCNG had a 3.5kPa. HCNG overpressure was 7.75 times higher than the CNG measurement, but HCNG overpressure was only 11.7% compared to hydrogen. In case of flame propagation, hydrogen had a very fast propagation characteristics. On the other hand, CNG and HCNG flame propagation velocity and distance tended to be relatively safe in comparison to hydrogen. The estimated flame boundary distance by jet-fire of hydrogen was a 5.5m, CNG was a 3.4m and HCNG was a 3.9m.

CFD analysis of the effect of different PAR locations against hydrogen recombination rate

  • Lee, Khor Chong;Ryu, Myungrok;Park, Kweonha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • Many studies have been conducted on the performance of a passive autocatalytic recombiner (PAR), but not many have focused on the locations where the PAR is installed. During a severe accident in a nuclear reactor containment, a large amount of hydrogen gas can be produced and released into the containment, leading to hydrogen deflagration or a detonation. A PAR is a hydrogen mitigation method that is widely implemented in current and advanced light water reactors. Therefore, for this study, a PAR was installed at different locations in order to investigate the difference in hydrogen reduction rate. The results indicate that the hydrogen reduction rate of a PAR is proportional to the distance between the hydrogen induction location and the bottom wall.