• Title/Summary/Keyword: Hydrofracturing test

Search Result 8, Processing Time 0.023 seconds

Improving Groundwater Recovery by Hydrofracturing (인공수압파쇄기법에 의한 지하수 양수량 증대)

  • 한정상;안종성;윤윤영;김형수;백건하
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.23-33
    • /
    • 2002
  • There are two case history. One is the case of 3 wells-group well system-drilled and artificially hydrofractured for dewatering to help to excavate and treat deep building foundation. The recoveries of groundwater of 3 wells are increased 29%, 42% and 110% respectively through hydrofracturing. Simultaneous pumping test reveals that 3 wells are geohydrologically interconnected considering lowered specific capacity comprising influence of additional drawdown effect by other 2 wells compared to single well test. Response time effect during single well test shows that dorminant lineaments are more expandable to other geological structures. The other one is the case of 28% increasing of groundwater productivity for domestic use by hydrofracturing.

Improvement of Groundwater Well Recovery by Hydrofracturing (인공수압파쇄기법에 의한 지하수 양수량 증대(II))

  • 한정상;안종성;윤윤영;이주형;전재수;김은주;김형수;백건하;원이정
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.74-85
    • /
    • 2003
  • To increase the yield from groundwater wells in various rock types by hydrofracturing, tests of 12 wells were carried out as a part of sustainable groundwater development and artificial recharge project. Test wells are selected 5 wells in Jurassic granites, 2 wells in Cretaceous volcanics, 4 wells in Cretaceous sedimentary rocks and one well in Pre-Cambrian gneiss. The results show that specific capacity of II wells increased about 7% to 366%, while a well in Cretaceous sedimentary rock decreased about 43.4% owing to plugging of fault clay. Meanwhile, impact distances influenced due to hydrofracturing ranged from 5.4 m to 82.7 m from the test wells, actual drawdown data measured during the pumping test after hydrofracturing are more or less decreased and reveals balanced drawdown.

Analysis of In-Situ Stress Regime from Hydraulic Fracturing Field Measurements in Korea (수압파쇄 현장시험을 통한 국내 지반의 초기응력 분포양상 해석)

  • Choi, Sung-Oong
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.111-116
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, and it has been developed to a wire-line system at their second generation. The current up-to-date system is more compact and is able to be operated by all-in-one system. With a progress in a hardware system, the software for analyzing in-situ stress regime has also been progressed. The shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF

Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test (수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The shut-in pressure calculated in common hydrofracturing test for vertical borehole equals generally to the minimum horizontal principal stress, so it should be considered as an essential parameter for determining the in-situ stress regime around the rock mass. It shows usually an ambiguous value in pressure-time history curves, however, because of the relationship between the behavior of hydraulic fractures and the condition of remote stress regime. In this study, a series of numerical analyses have been carried out to compare several methods for determining the shut-in pressure during hydrofracturing. The hydraulic-mechanical coupling has been applied to numerical analysis for simulating the fracture propagation by hydraulic pressure, and the different discontinuity geometry has been considered in numerical models to examine the effect of numerical element shape on fracture propagation pattern. From the numerical simulations with the four different discontinuity geometries, it was revealed that the shut-in pressure obtained from graphical methods rather than statistical method was relatively small. Consequently a care should be taken in selecting a method for determining the shut-in pressure when a stress anomaly around borehole and a fracture propagation with complicate mechanism are considered.

A Decade's Experiences on the Hydrofracturing In-Situ Stress Measurement for Tunnel Construction in Korea (암반터널 설계를 위한 수압파쇄 초기지압 측정의 10여년 간의 경험)

  • Choe, Seong-Ung;Park, Chan;Sin, Jung-Ho;Sin, Hui-Sun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.79-88
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, so it was not easy to handle. It had been modified to a wire-line system at their second generation. It was more compact one but it also needed an additional air-compressor. Our current system is much more compact and operated by all-in-one system, so it doesn't need an additional air-compressor. With a progress in a hardware system, the software for analyzing the in-situ stress regime has also been progressed. For example, the shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF

The Effects of High Pressure Water Contact State on Hydraulic Fracturing (고압수 접촉상태가 수압파쇄에 미치는 영향)

  • Lee, Sang Hun;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.409-417
    • /
    • 2016
  • The shale gas is emerging as one of the oil and gas resources which can replace the traditional oil and gas resources. As the shale layer where the shale gas is deposited has low permeability, the hydrofracturing method is required to improve the productivity. This study is designed to conduct the laboratory hydrofracturing test on the samples which are modeled after the drilling hole having the general drilling hole and spiral groove. And compare the initial fracturing pressure and fluid contact between them in order to the result of the hydrofracturing depending on the shape of the drilling hole. In addition, the results were compared with the numerical modeling values from 3DEC and they were also compared with the data from the advance researches. It was found from the study that rather than the contact area of the high pressures water, the force concentration depending on the form of guide hole was more effective in the hydrofracturing.

Stability Analysis of Mine Roadway Using Laboratory Tests and In-situ Rock Mass Classification (실내시험과 현장암반분류를 이용한 광산갱도의 안정성 해석)

  • Kim, Jong Woo;Kim, Min Sik;Lee, Dong Kil;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.212-223
    • /
    • 2014
  • In this study, the stability analyses for metal mine roadways at a great depth were performed. In-situ stress measurements using hydrofracturing, numerous laboratory tests for rock cores and GSI & RMR classifications were conducted in order to find the physical properties of both intact rock and in-situ rock mass distributed in the studied metal mine. Through the scenario analysis and probabilistic assessment on the results of rock mass classification, the in-situ ground conditions of mine roadways were divided into the best, the average and the worst cases, respectively. The roadway stabilities corresponding to the respective conditions were assessed by way of the elasto-plastic analysis. In addition, the appropriate roadway shapes and the support patterns were examined through the numerical analyses considering the blast damaged zone around roadway. It was finally shown to be necessary to reduce the radius of roadway roof curvature and/or to install the crown reinforcement in order to enhance the stability of studied mine roadways.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.