• 제목/요약/키워드: Hydroforming process

검색결과 143건 처리시간 0.021초

유한요소법을 이용한 자동차 Subframe의 하이드로포밍 공정 해석 (Analysis of Hydroforming Process for Automobile Subframe by FEM)

  • 장유철;뇌여평;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2000
  • By using a three-dimensional finite element program HydroFORM-3D based on a rigid-plastic model, the hydroforming process for automobile subfrmae is analyzed in this study. The goal of this study is to accomplish preform design and determine the level of internal pressure for producing final hydroformed subframe component. Prior to hydroforming, the initial tube blank must be bent to the approximate centerline of the final part to enable the tube to be placed in the die cavity, After then, a preforming operation like stamping is carried out to the prebent tube. Finally, hydroforming process is performed to the preformed tube to get the final production. And through ductile fracture theory, the failure, bursting, is predicted during hydroforming process for tube blank with different diameter.

  • PDF

튜브 액압성형품의 공정단계별 가공 경화 특성 연구 (A Study on the strain hardening of tube hydroforming according to process)

  • 박현규;임홍섭;이혜경;전동현;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.325-328
    • /
    • 2008
  • In recent years, developments of light weight vehicle are one of the most important issues in automotive industry. It is important to know the variations of the mechanical properties in the hydro forming process for the safe and durable design purposes. Generally, tube hydroforming process consists of three main processes such as bending, preforming, and hydroforming. It means that the strain hardening histories of final products are nonlinear. In this study, strain hardening behavior during hydroforming has been investigated by hydroforming of engine cradle as a model process. The variation of mechanical properties such as local hardness and strength were used as an index of strain hardening during respective processes. The correlationship between strength and hardness obtained from tensile test has been equivalently converted into correlation between hardness and measured strain.

  • PDF

연성파괴모델의 유한요소법을 이용한 하이드로포밍공정에의 성형한계 예측 (Prediction of Forming Limit in Hydroforming Processes by Using Finite Element Method and Ductile Fracture Criterion)

  • 김대환;뇌여평;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.230-235
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit fer two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral I is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

Tube Hydroforming 공정의 성형성 평가 (Evaluation of Tube Hydroformability)

  • 김영석;조흥수;박춘달;김영삼;조완제
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.604-614
    • /
    • 2000
  • In this paper, the mechanical characteristics and fundamental mechanism of a roll-formed tube during the hydroforming process are investigated in order to obtain the ewly localization of the tube hydroforming skills which are the core production techniques for the super light weight and high safety of the car body. Also, the theoretical influences of the material variables and the processes on the formability in the tube hydroforming are studied. In addition, the techniques to evaluate the forming limit of the bulging process of a tube are developed.

  • PDF

Side Member 관재 하이드로포밍 성형해석 (Forming Analysis on the Tubular Hydroforming of Side Member)

  • 박재헌;최이천;오영근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.54-58
    • /
    • 2001
  • In recent years, hydroforming technology has been one of the most important technology in automotive industry in the points of weight saving, cost reduction and qualify improvement. However, compared with traditional metal forming technology, hydroforming has much fewer information in experience and empirical knowledge. But we don't have my sufficient time and money to produce hydroforming products using real blank directly Therefore Simulation is essential in hydrofonrung technology development. In this paper, we simulate the side member as the tubular hydroforming technology. The manufacturing process of side member' consists of pre_bending, pre_forming, and hydroforming of a thin tube. Variables such as internal pressure, end feeding, and tool geometry are optimized to improve the forming safety. And we simulate side member according to several lubricant conditions. from those simulations, we find that strain distributions can be reduced well by internal pressure and end feeding control, and lubrication is the most important thing in hydroforming process.

  • PDF

내구성을 고려한 토션빔형 후륜 현가장치의 튜브 하이드로포밍 공정 설계 (Tube Hydroforming Process Design of Torsion Beam type Rear Suspension Considering Durability)

  • 임희택;오인석;고정민;김헌영
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.201-209
    • /
    • 2007
  • Generally, the forming process of suspension system parts have been considered only considered with the formability and have not been considered with the durability of suspension system. But the durability of suspension system is very important characteristic for the dynamic performance of vehicle. Therefore, the suspension system should be manufactured to consider the durability as well as the formability. This paper is about an optimum forming process design with the effect of section properties to consider the roll durability of torsion beam type suspension. In order to determine the tube hydroforming process for the satisfaction the roll durability, the stamping and hydroforming simulation by finite element method were performed. And the results from finite element analysis and roll durability examination showed the tube hydroforming process of torsion beam is optimized as satisfying the durability performance.

유한요소해석에 의한 자동차용 관재액압성형 부품의 성형성 평가 (Evaluation of Formability on Hydroformed Part for Automobile Based on Finite Element Analysis)

  • 송우진;허성찬;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.52-58
    • /
    • 2008
  • Tube hydroforming process is generally consisted with pre-bending, preforming and hydroforming processes. Among forming defects which may occur in tube hydroforming such as buckling, wrinkling and bursting, the wrinkling and bursting by local instability under excessive tensile stress mode were mainly caused by thinning phenomenon in the manufacturing process. Thus the accurate prediction and suitable evaluation of the thinning phenomenon play an important role in designing and producing the successfully hydroformed parts without any failures. In this work, the formability on hydroformed part for automobile, i.e. engine cradle, was evaluated using finite element analysis. The initial tube radius, loading path with axial feeding force and internal pressure, and preformed configuration after preforming process were considered as the dominant process parameters in total tube hydroforming process. The effects on these process parameters could be confirmed through the numerical experiments with respect to several kinds of finite element simulation conditions. The degree of enhancement on formability with each process parameters such as initial tube radius, loading path and preform configuration were also compared. Therefore, it is noted that the evaluation approach of the formability on hydroformed parts for lots of industrial fields proposed in this study will provide one of feasible methods to satisfy the increasing practical demands for the improvement of the formability in tube hydroforming processes.

튜브 하이드로포밍 공정에서의 마찰특성에 관한 연구 (A Study on the Friction Characteristics in Tube Hydroforming Process)

  • 김영석;손현성;한수식
    • 소성∙가공
    • /
    • 제11권6호
    • /
    • pp.475-481
    • /
    • 2002
  • Tube hydroforming is a relatively new technology in comparison with conventional stamping process. Thus, there is no large knowledge base to assist the product and process designers, especially from the friction point of view. This paper covers the topic of friction and lubrication with regard to tube hydroforming. It presents the fact that frictional characteristic can have an effect on the formability of specific components. The presented concept describes the equipment which is required to determine the friction coefficient. Some example results of the friction and bulge test are shown.

액압 성형 공정 시 플랜지부 형성을 위한 FE 해석 (FE Analysis of Hydroforming Process for Flange Forming)

  • 최민규;주병돈;이성문;이현종;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.177-180
    • /
    • 2009
  • Tube hydroforming provides a number of advantages over the conventional stamping process, including fewer secondary operations, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength and stiffness. A hydroformed vehicle body component has an attachment flange or the like-formed as an integral part of the hydroforming process. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. This study shows analysis results that form the flanged tubular parts in the hydroforming. The thickness variations and defects during the hydroforming for flange forming could be analyzed by FE analysis. FE analysis was performed by LS-DYNA/Dynaform 5.5.

  • PDF

하이드로포밍 공정 전후의 인장 및 피로 물성 변화 (The Variations of Tensile and Fatigue Properties in the Hydroforming Process)

  • 오충석;권순규;최병익
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.111-118
    • /
    • 2007
  • Hydroforming is a cost-effective way of shaping malleable metals such as steel into lightweight, structurally stiff and strong pieces. With the increased use of the hydroformed components in automotive and aerospace industries, it is important to know the variations of the mechanical properties in the hydroforming process far the safe and durable design purposes. The principal goal of this paper is to suggest a procedure to evaluate the variations of tensile and fatigue properties before and after a hydroforming process. A miniature specimen, which is 0.2 mm thick and 2.3 mm wide, is devised and tested to measure local mechanical properties. The effects of specimen size, defects, surface roughness, and hydroforming on the tensile and fatigue behaviors are discussed.