• Title/Summary/Keyword: Hydrodynamic stability

Search Result 228, Processing Time 0.025 seconds

Mathematical Model for Dynamics of Manta-type Unmanned Undersea Vehicle with Six Degrees of Freedom and Characteristics of Manoeuvrability Response (Manta형 무인잠수정의 6자유도 운동 수학모델 및 조종응답 특성)

  • Sohn, Kyoung-Ho;Lee, Seung-Keon;Ha, Seung-Pil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.399-413
    • /
    • 2006
  • Mathematical model for coupled motions of Manta-type Unmanned Undersea Vehicle(UUV) moving with six degrees of freedom, is formulated. Furthermore, a calculation method for estimating the linear hydrodynamic derivatives acting on UUV, is proposed, and some of the estimated linear hydrodynamic derivatives are compared with results of captive model experiment. Based on linear dynamic model of UUV, a study was made to examine dynamic stability and turning ability in horizontal plane. And directional stability and required elevation rudder angles for neutrally operating in vertical plane, are also discussed.

Parametrically Excited Vibrations of Second-Order Nonlinear Systems (2차 비선형계의 파라메트릭 가진에 의한 진동 특성)

  • 박한일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.67-76
    • /
    • 1992
  • This paper describes the vibration characteristic of second-order nonlinear systems subjected to parametric excitation. Emphasis is put on the examination of the hydrodynamic nonlinear damping effect on limiting the response amplitudes of parametric vibration. Since the parametric vibration is described by the Mathieu equation, the Mathieu stability chart is examined in this paper. In addition, the steady-state solutions of the nonlinear Mathieu equation in the first instability region are obtained by using a perturbation technique and are compared with those by a numerical integration method. It is shown that the response amplitudes of parametric vibration are limited even in unstable conditions by hydrodynamic nonlinear damping force. The largest reponse amplitude of parametric vibration occurs in the first instability region of Mathieu stability chart. The parametric excitation induces the response of a dynamic system to be subharmonic, superharmonic or chaotic according to their dynamic conditions.

  • PDF

Influence of head structure on hydrodynamic characteristics of transonic motion projectiles

  • Wang, Rui;Yao, Zhong;Li, Daqin;Xu, Baocheng;Wang, Jiawen;Qi, Xiaobin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.479-490
    • /
    • 2020
  • The hydrodynamic characteristic of transonic motion projectiles with different head diameters are investigated by numerical simulation. Compressibility effect in liquid-phase water are modeled using the Tait state equation. The result shows that with increasing of velocity the compression waves transfer to shock waves, which cause the significant increasing of pressure and decreasing the dimensions of supercavities. While the increasing of head diameter, the thickness, the vapor volume fraction and the drag coefficient of supercavities are all enhanced, which is conducive to the stability of transonic-speed projectiles. The cavity dynamics of the different head projectiles are compared, and the results shows when Mach number is in high region, the truncated cone head projectile is enveloped by a cavity which results in less drag and better stability.

Dynamic Stability Analysis of a Submarine by Changing Conning Tower Position and Control Planes (잠수함의 Conning Tower 위치 및 제어판 형태에 따른 동적 안정성 분석)

  • Han, Ji-Hun;Jeong, Jae-Hun;Lee, Seung-Bum;Jang, Keun-Young;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.389-394
    • /
    • 2017
  • In this paper, the captive model test of a submarine using the RA test was carried out in a square basin. The target model submarine consisted of four types varying according to the position of conning tower and control planes. Hydrodynamic derivatives were acquired by multi-regression analysis. As a result, horizontal dynamic stability indexes of the four types presented positive values and satisfied dynamic stability requirements. In addition, the stability index of type 1 and type 4 - each with the same cruciform configuration of the aft planes - scored within the acceptable range of motion stability.

A study on hydrodynamic characteristics of artificial upwelling structures (인공용승구조물의 수리학적 기능성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.62-67
    • /
    • 2002
  • While upwelling regions account for only 0.1% of the ocean surface, they yield over 40% of world's fish catch. Thus it is vary important making upwelling region by various methods. This study was performed to find out basic hydrodynamic characteristics (function, stability..,) of artificial upwelling structures. The hydrodynamic characteristics of artificial upwelling structures can be summarized as follows: 1) The falling velocity of blocks was effected size($l_B$) of blocks than incident current velocity( $V_0$). 2) The falling horizontal distance was reduced as induce of stratification parameters and block' size. 3) Generation of artificial upwelling current was effected by size of structures and incident current. When stratification parameters was about 3.0 and relative height(hs/h) of structures was about $0.125{\sim}0.15$, stable artificial upwelling current was generated in the back-side of structures.

  • PDF

Prediction of Hydrodynamic Coefficients for Underwater Vehicle Using Rotating Arm Test (강제선회시험을 이용한 수중운동체의 유체력 미계수 추정)

  • Jeong, Jae-Hun;Han, Ji-Hun;Ok, Jihun;Kim, Hyeong-Dong;Kim, Dong-Hun;Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • In this study, hydrodynamic coefficients were obtained from a Rotating Arm (RA) test, which is one of the captive model tests used to provide accurate coefficients in the control motion equation of an underwater vehicle. The RA test was carried out at the RA facility of ADD (Agency for Defense Development), and the forces and moments acting on the underwater vehicle were measured using a six-axis waterproof gage. A multiple regression analysis was used in the analysis of the measured data. The experimental results were also verified by comparison with the theoretical values of the previous linear coefficients. In addition, the stability indices in the horizontal plane were calculated using the linear and nonlinear coefficients, and the dynamic stability of the underwater vehicle was estimated to have a good dynamic performance with a depth ratio of 6.0.

Conformational Stability of Proteins in Colloidal Food Model System (콜로이드 모델 식품에 있어 단백질의 구조적 안정성)

  • Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.277-281
    • /
    • 1993
  • To elucidate the conformational stability of proteins in colloidal food system, molecular properties of various proteins such as chemically modified ${\beta}-lactoglobulin$, bovine serum albumin (BSA) structural intermediates, and ${\beta}-casein$ under chaotropic conditions, were examined using circular dichroism, SS bond content, and hydrodynamic radius determination. As refolding time increases, BSA intermediates approach the conformation of native BSA. And succinylation made ${\beta}-lactoglobulin$ have more aperiodic structure by increasing net negative charge. Also, under chaotropic conditions, the conformation of P-casein was affected by hydrophobic interactions. This study clearly indicates that hydrophobic interactions and electrostatic interactions are major contributing factors in conformational stability of proteins.

  • PDF

An Experimental Study on Hydrodynamic Characteristics of a Control Fin for a Supercavitating Underwater Vehicle (초월공동 수중운동체용 제어핀의 유체력 특성에 대한 실험연구)

  • Jeong, So-Won;Park, Sang-Tae;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Wedge-shaped fins are generally used to provide sufficient forces and moments to control and maneuver a supercavitating vehicle. There are four fins placed along the girth of the vehicle, near he tail: two of the fins are horizontal and the other two fins are vertical. In a fully developed supercavitating flow condition, a part of the fin is in a cavity pocket and the other is exposed to water. In this paper, experimental investigations of hydrodynamic characteristics of the wedge-shaped fin models are presented. Experiments were conducted at a cavitation tunnel of the Chungnam National University. We first closely observed the typical formation of wake cavitation and measured lift and drag forces acting on two different test models. Next, using a special device for generating natural and artificial supercavities, we investigated hydrodynamic forces at different cavitation number conditions. This work provides a basis for interpreting the cavity stability and hydrodynamic characteristics of the wedge-shaped control fin for a supercavitating vehicle.

A Comparison of Various Governing Parameters on Hydrodynamic Stability in Interface on Small Solar Pond (소형태양수구내(小型太陽水構內) 중간경계면(中間境界面)에서 수력학적(水力學的) 안정(安定)에 관(關)한 각종(各種) 지배변수(支配變數)의 비교(比較))

  • Park, Ee-Dong
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.11-19
    • /
    • 1985
  • In this paper, the interface stability not to occur mixing and entrainment between the adjacent layers has been studied in the case of the selective withdrawal of a stratum and the injection in stratified fluid formed by the density difference in a small solar pond. There are stability parameter, Richardson number, Rayleigh number and Froude number as the parameters governing stability in order to measure the interface stability on the stratified fluid. The model which could measure the interface stability on the stratified fluid was the small solar pond composed by 1 meters wide, 2 meters high, and 5 meters long. In order to measure the interface stability on the stratified fluid at the inlet port, the middle section and the outlet port, Richardson number, Rayleigh number, and Froude number involved in the parameters governing the stability were calculated by means of the data resulted from the test of the study on hydrodynamic stability between the convective and nonconvective layers in that solar pond. Richardson number written by the ratio of inertia force to buoyancy force can be used in order to measure the stability on the stratified fluid related to the buoyancy force generated from the injection of fluid. Rayleigh number written by the product of Grashof number by Prandtl number can be used in order to measure the stability of the fluid related to the heat flux and diffusivity of viscosity. Froude number written by the ratio of gravity force to inertia force can be used in order to measure the stability of the nonhomogeneous fluid related to the density difference. As the result of calculating the parameters governing stability, the interface stability on the stratified fluid couldn't be identified below the 70cm height from the bottom of the solar pond, but it could be identified above the 70cm height from it at the inlet port, the middle section and the outlet port. When compared with such the three parameters as Richardson number, Rayleigh number, Froude number, the calculated result was in accord with them at inlet port, the middle section and the outlet port. Henceforth, it is learned that even though any of the three parameters is used for the purpose of measuring the interface stability on the stratified fluid, the result will be the same with them. It is concluded that all the use of Richardson number, Rayleigh number, and Froude number, is desirable and infallible to measure the interface stability on the stratified fluid in the case of considering the exist of the fluid flow and the heat flux like the model of the solar pond.

  • PDF

Resistance and stability evaluation of mobile fish-cage (이동형 수상부유식 가두리의 저항성능과 복원성능 평가)

  • KIM, Hyo-Ju;JEONG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • Mobile fish-cage was developed assuming a cage net with an enclosed area, which and estimated the hydrodynamic characteristics of the cage through the model experiment. Flux-shielding plates, installed in the bow were compared with the resistance test carried out by making a hole, bilge keel and stud, and basic block flow rate consisting of the results to a flat surface plate. The experimental results confirmed the improved resistance performance effect of 3~6% in the bilge keel and the stud form. To assess the stability of the fish-cage, evaluation of the stability in accordance with the stability criteria for determining the floating docks had confirmed that it satisfied the static stability performance under operating conditions at sea.