• 제목/요약/키워드: Hydrodynamic forces and moments

검색결과 76건 처리시간 0.025초

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션 (Circular Motion Test Simulation of KVLCC1 Using CFD)

  • 신현경;정재환
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

Study on the Development of the Maneuvering Mathematical Model Considering the Large Angle Motion of Submarine

  • Jae Hyuk Choi;Sungwook Lee;Jinhyeong Ahn
    • 한국해양공학회지
    • /
    • 제37권3호
    • /
    • pp.81-88
    • /
    • 2023
  • Maneuverability is a crucial factor for the safety and success of submarine missions. This paper introduces a mathematical model that considers the large drift and angle of attack motions of submarines. Various computational fluid dynamics (CFD) simulations were performed to adapt Karasuno's fishery vessel maneuvering mathematical model to submarines. The study also presents the procedure for obtaining the physics-based hydrodynamic coefficients proposed by Karasuno through CFD calculations. Based on these coefficients, the reconstructed forces and moments were compared with those obtained from CFD and to the hydrodynamic derivatives expressed by a Taylor expansion. The study also discusses the mathematical maneuvering model that accounts for the large drift angles and angles of attack of submarines. The comparison results showed that the proposed maneuvering mathematical model based on modified Karasno's model could cover a large range of motions, including horizontal motion and vertical motions. In particular, the results show that the physics-based mathematical maneuvering model can represent the forces and moments acting on the submarine hull during large drift and angle of attack motions. The proposed mathematical model based on the Karasuno model could obtain more accurate results than the Taylor third-order approximation-based mathematical model in estimating the hydrodynamic forces acting on submarines during large drift and angle of attack motions.

다관절 해저로봇 'Crabster'에 작용하는 조류하중 산정 및 유동해석 (Flow Analysis around Multi-Legged Underwater Robot "Crabster" to Evaluate Current Loads)

  • 박연석;김우전;전봉환
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, numerical simulations were performed to evaluate the current loads acting on the multi-legged underwater robot "Crabster" with a variety of incident angles using the ANSYS-CFX package. The Reynolds-averaged Navier-Stokes equations were solved to simulate the fluid flow around Crabster to calculate the forces and moments induced by incoming currents with various angles. First, to assess the posture stability of the body, the forces and moments were calculated with various incident angles when the current acted in the vertical and horizontal directions. Next, two forms of legs (box and foil types) were evaluated to determine the hydrodynamic force variation. Finally, the current forces and moments acting on the Crabster body with the legs attached were estimated.

An Experimental Study on Ship-Bank Hydrodynamic Interaction Forces

  • 이춘기;문성배;정연철;정태권;이동섭;강일권
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 춘계학술대회
    • /
    • pp.15-16
    • /
    • 2013
  • This paper is mainly concerned with the ship-bank interaction by model test. The experiments for the characteristics of hydrodynamic interaction forces and moments between vessel and bank with a mound were carried out in the seakeeping and maneuvering basin.

  • PDF

VPMM 시험을 통한 무인 수중 글라이더 모형의 동유체력 계수 추정에 관한 연구 (Experimental Study on Hydrodynamic Coefficients of Autonomous Underwater Glider Using Vertical Planar Motion Mechanism Test)

  • 정진우;정재훈;김인규;이승건
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.119-125
    • /
    • 2014
  • A vertical planar motion mechanism(VPMM) test was used to increase the prediction accuracy for the maneuverability of an underwater glider model. To improve the accuracy of the linear hydrodynamic coefficients, the analysis techniques of a pure heave test and pure pitch test were developed and confirmed. In this study, the added mass and damping coefficient were measured using a VPMM test. The VPMM equipment provided pure heaving and pitching motions to the underwater glider model and acquired the forces and moments using load cells. As a result, the hydrodynamic coefficients of the underwater glider could be acquired after a Fourier analysis of the forces and moments. Finally, a motion control simulation was performed for the glider control system, and the results are presented.

왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석 (Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

표류(漂流)를 고려한 선체운동(船體運動) (The Effect of The Drift Velocity on The Ship Motion)

  • 황종흘;김용직
    • 대한조선학회지
    • /
    • 제18권3호
    • /
    • pp.29-38
    • /
    • 1981
  • In general the drift result in ship heeling, thus it seems to be necessary to analyze the ship motion by considering both the drifting and heeling phenomena. In this paper, a drift velocity and a heeling angle are given as prior conditions, and then within the linear potential theory the hydrodynamic coefficients and wave exciting forces and moments are derived for a ship advancing and drifting with constant speeds. And numerical calculations are preformed for a cylindrical body of shiplike cross section at zerp forward velocity. The 2-D hydrodynamic forces and moments of a heeled cylinder are calculated by using the Frank Close-Fit method. These numerical results for the oscillating cylinder without drift velocity have shown better agreements with experimental data than the numerical results of Kobayashi[2]. The motion responses for a drifting cylinder are calculated ignoring the drift velocity effect in the free surface condition. The accuracy of these calculations can not be verified, because the experimental data are not available. Through these numerical calculations to so concluded that drift velocity effects on the body motion are signiffcant.

  • PDF

배골형단면(背骨型斷面) 주상체(柱狀體)의 좌우동요(左右動搖)에 있어서의 동유체역학적(動流體力學的) 힘에 관하여 (Hydrodynamic Forces produced by the Swaying Oscillation of Cylinders with Chine Sections on the Free Surface.)

  • 황종흘;양영순
    • 대한조선학회지
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 1974
  • Hydrodynamic forces and moments produced by the swaying oscillation on the free surface were exactly calculated by Ursell-Tasai method for the cylinders with Kim's chine form sections and the sway responses of the cylinders of those chine form sections among the regular beam sea were also calculated. The results of the computation were compared with those of Lewis form sections. It is concluded that the effects of the section form on the added mass, and damping are small, if the section forms had same beam-draft ratio and sectional area coefficient in the case of sway motion. It is also known that the above little effects of section shapes on the basic hydrodynamic forces do not effect on the sway motion responses of cylinderical bodies among the regular beam sea. The sway motion responses of cylinderical bodies are varied linearly with the wave numbers.

  • PDF

VPMM 시험을 이용한 잠수함 모형의 유체력 미계수 추정 (Estimation of Hydrodynamic Derivatives of Submarine Model by Using VPMM Test)

  • 정진우;정재훈;김인규;이승건
    • 한국항해항만학회지
    • /
    • 제38권2호
    • /
    • pp.97-103
    • /
    • 2014
  • 최근 들어 전 세계적으로 항공모함과 첨단 구축함 등 대규모의 최신 함정위주의 해상전력을 강화하는 상황에서 잠수함의 중요성이 더욱 부각되고 있다. 이에 따른 잠수함의 조종성능 향상을 위한 정밀한 동유체력 미계수 값이 요구된다. 본 논문에서는 VPMM(Vertical Planar Motion Mechanism) 실험을 위하여 연직 강제 동요시험(VPMM)장비를 이용하였고, 이를 통해 동유체력을 측정하였다. 심도, 주기, 속도 등을 변화시키며 다양한 환경에서 실험을 실시하였다. 잠수함 모형을 속도 U로 예인하면서 동시에 순수 상하동요(Pure heave), 순수 종동요(Pure pitch) 운동을 각각 주었고, 이때 부가되는 힘과 모멘트를 잠수함 모형의 선수 선미 부분에 장착된 로드셀을 이용하여 각각 획득하였다. 그 결과, 푸리에 해석을 통한 잠수함 모형의 선형 유체력 미계수들을 추정할 수 있었다.