• Title/Summary/Keyword: Hydrodynamic effect

Search Result 596, Processing Time 0.028 seconds

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

Experimental Investigation of the Hydrodynamic Characteristics of a Ship due to Bank Effect

  • Vo, Anh Khoa;Mai, Thi Loan;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Navigation and Port Research
    • /
    • v.46 no.2
    • /
    • pp.82-91
    • /
    • 2022
  • When a ship moves in the proximity of the lateral bank, bank suction forces are generated due to bank effects. Thus, hydrodynamic forces can significantly impact the ship's maneuverability and navigation safety. In this study, model tests were performed to investigate the hydrodynamic forces exerted on a ship, especially suction forces caused by bank effects, using captive model and bank effect tests. A low-speed condition was selected in this study, because of the perilous situation as the ship moves close to the bank. The accuracy of the hydrodynamic forces exerted on the hull was verified, by comparing the results of the static drift test with the results obtained from other institutes at design speed. The straight simulation caused by bank effects was then implemented using estimated hydrodynamic coefficients.

Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method

  • Farkas, Andrea;Degiuli, Nastia;Martic, Ivana
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.102-114
    • /
    • 2021
  • Biofouling represents an important problem in the shipping industry since it causes the increase in surface roughness. The most of ships in the current world fleet do not have good coating condition which represents an important problem due to strict rules regarding ship energy efficiency. Therefore, the importance of the control and management of the hull and propeller fouling is highlighted by the International Maritime Organization and the maintenance schedule optimization became valuable energy saving measure. For adequate implementation of this measure, the accurate prediction of the effects of biofouling on the hydrodynamic characteristics is required. Although computational fluid dynamics approach, based on the modified wall function approach, has imposed itself as one of the most promising tools for this prediction, it requires significant computational time. However, during the maintenance schedule optimization, it is important to rapidly predict the effect of biofouling on the ship hydrodynamic performance. In this paper, the effect of biofilm on the ship hydrodynamic performance is studied using the proposed performance prediction method for three merchant ships. The applicability of this method in the assessment of the effect of biofilm on the ship hydrodynamic performance is demonstrated by comparison of the obtained results using the proposed performance prediction method and computational fluid dynamics approach. The comparison has shown that the highest relative deviation is lower than 4.2% for all propulsion characteristics, lower than 1.5% for propeller rotation rate and lower than 5.2% for delivered power. Thus, a practical tool for the estimation of the effect of biofouling with lower fouling severity on the ship hydrodynamic performance is developed.

Effects of Tribological Parameters on the Nonlinear Behavior of a Spur Gear Pair with One-Way Clutch (트라이볼로지 변수가 원웨이클러치를 가지는 평기어쌍의 비선형 거동에 미치는 영향)

  • Cheon, Gill-Jeong
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.241-249
    • /
    • 2008
  • This paper describes the tribological effects on the nonlinear behavior of a spur gear pair with one-way clutch according to the direct contact elastic deformation model over a wide range of speeds, considering the hydrodynamic effects. The effects of various lubrication parameters, such as viscosity, film width, and friction, on the nonlinear dynamic behavior were analyzed. Forces due to the entraining velocity and the hydrodynamic friction were about two orders smaller than normal forces over the whole speed range. While the viscosity has a strong effect on the behavior of gear pair systems, friction has very little effect on torsional behavior. The inclusion of the hydrodynamic effect facilitates nonlinearity by increasing the overlap and damping, as well as decreasing elastic deformation and tooth reaction forces.

Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider

  • Javaid, Muhammad Yasar;Ovinis, Mark;Hashim, Fakhruldin B.M.;Maimun, Adi;Ahmed, Yasser M.;Ullah, Barkat
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.382-389
    • /
    • 2017
  • We are developing a prototype underwater glider for subsea payload delivery. The idea is to use a glider to deliver payloads for subsea installations. In this type of application, the hydrodynamic forces and dynamic stability of the glider is of particular importance, as it has implications on the glider's endurance and operation. In this work, the effect of two different wing forms, rectangular and tapered, on the hydrodynamic characteristics and dynamic stability of the glider were investigated, to determine the optimal wing form. To determine the hydrodynamic characteristics, tow tank resistance tests were carried out using a model fitted alternately with a rectangular wing and tapered wing. Steady-state CFD analysis was conducted using the hydrodynamic coefficients obtained from the tests, to obtain the lift, drag and hydrodynamic derivatives at different angular velocities. The results show that the rectangular wing provides larger lift forces but with a reduced stability envelope. Conversely, the tapered wing exhibits lower lift force but improved dynamic stability.

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

The Effect of Fluid-Structure Interaction on the Dynamic Response of Reactor Internals (유체-구조물 상호작용이 원자로내부구조물의 동적응답에 미치는 영향)

  • 정명조;박찬국;황원걸
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.73-82
    • /
    • 1993
  • Investigated in this paper is the effect of fluid-structure interaction between reactor internal components due to their immersion in a confining fluid on the dynamic responses. A non-linear mathematical model is developed for the dynamic analysis of the reactor internals, which includes lumped masses, stiffnesses and hydrodynamic couplings. The hydrodynamic mass matrix which characterizes the fluid-structure interaction is calculated. Also, the equations of motion containing hydrodynamic mass matrix are presented. The responses of the reactor internals due to seismic and pipe break excitations are obtained for the case of with- and without-hydrodynamic couplings and the different response characteristics are investigated.

  • PDF

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

Optimized biodiesel yield in a hydrodynamic cavitation reactor using response surface methodology

  • Neeraj Budhraja;R.S. Mishra
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.233-241
    • /
    • 2022
  • Biodiesel is a non-polluting and non-toxic energy source that can replace conventional diesel. However, the higher production cost and raw material scarcity became challenges that obstruct the commercialization of biodiesel production. In the current investigation, fried cooking oil is used for biodiesel production in a hydrodynamic cavitation reactor, thus enhancing raw material availability and helping better waste oil disposal. However, due to the cavitation effect inside the reactor, the hydrodynamic cavitation reactor can give biodiesel yield above 98%. Thus, the use of orifice plates (having a different number of holes for cavitation) in the reactor shows more than 90% biodiesel yield within 10 mins of a time interval. The effects of rising temperature at different molar ratios are also investigated. The five-hole plate achieves the highest yield for a 4.5:1 molar ratio at 65℃. And the similar result is predicted by the response surface methodology model; however, the optimized yield is obtained at 60℃. The investigation will help understand the effect of hydrodynamic cavitation on biodiesel yield at different molar ratios and elevated temperatures.

Hydrodynamic Responses of Spar Hull with Single and Double Heave Plates in Random Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Heave plates have been widely used to enhance viscous damping and thus reduces the heave response of Spar platforms. Single heave plate attached to the keel of the Spar has been reported in literature (Tao and Cai 2004). The effect of double heave plates on hydrodynamic response in random waves has been investigated in this study. The influence of relative spacing $L_d/D_d$ ($D_d$-the diameter of the heave plate) on the hydrodynamic response in random waves has been simulated in wave basin experiments and numerical model. The experimental investigation has been carried out using 1:100 scale model of Spar with double heave plates in random waves for different relative spacing and varying wave period. The influence of relative spacing between the heave plates on the motion responses of Spar are evaluated and presented. Numerical investigation has been carried out to investigate effect of relative spacing on hydrodynamic characteristics such as heave added mass and hydrodynamic responses. The measured results were compared with those obtained from numerical simulation and found to be in good agreement. Experimental and numerical simulation shows that the damping coefficient and added mass does not increase for relative spacing of 0.4 and the effect greater than relative spacing on significant heave response is insignificant.