• Title/Summary/Keyword: Hydrodynamic and structural characteristics

Search Result 55, Processing Time 0.028 seconds

Evaluation of Dynamic Characteristics of the Box Beam of HANARO Reactor Pool (하나로 원자로 수조내 사각보의 동특성 평가)

  • Kim, Seong-Ho;Dan, Ho-Jin;Ryu, Jeong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.525-525
    • /
    • 2005
  • This study is for the seismic analysis and the structural integrity evaluation of the box beam for supporting nuclear fuel-transfer-basket of the HANARO reactor pool. For performing the seismic analysis and evaluating the structural integrity in air or submerged condition, the finite element model of the fuel-transfer-basket and its supporting box beam(the coupled model) was developed. The hydrodynamic effect is also considered by using added mass concept. The seismic response spectrum analyses of the coupled model under the design floor response spectrum loads of Safe Shutdown Earthquake(SSE) were performed. Through the numerical experiments, the analysis results show that the stress values of the coupled model lot the structural integrity are within the ASME Code limits.

  • PDF

Response of square tension leg platforms to hydrodynamic forces

  • Abou-Rayan, A.M.;Seleemah, Ayman A.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.115-135
    • /
    • 2012
  • The very low natural frequencies of tension leg platforms (TLP's) have raised the concern about the significance of the action of hydrodynamic wave forces on the response of such platforms. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that coupling between various degrees of freedom has insignificant effect on the displacement responses. Moreover, for short wave periods (i.e., less than 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on the wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about its original position. Also, for short wave periods, a higher mode contribution to the pitch response accompanied by period doubling appeared to take place. For long wave periods, (12.5 and 15 sec.), this higher mode contribution vanished after very few cycles.

Vortex-induced vibration characteristics of a low-mass-ratio flexible cylinder

  • Quen, Lee Kee;Abu, Aminudin;Kato, Naomi;Muhamad, Pauziah;Siang, Kang Hooi;Hee, Lim Meng;Rahman, Mohd Asamudin A
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.621-631
    • /
    • 2020
  • A laboratory experiment is conducted is to investigate the behaviour of a low-mass-ratio and high aspect ratio flexible cylinder under vortex-induced vibration (VIV). A flexible cylinder with aspect ratio of 100 and mass ratio of 1.17 is towed horizontally to generate uniform flow profile. The range of Reynolds number is from 1380 to 13800. Vibration amplitude, in-line and cross-flow frequency response, amplitude trajectory, mean tension variation and hydrodynamic force coefficients are analyzed based on the measurement from strain gauges, load cell and CCD camera. Experimental results indicate that broad-banded lock-in region is found for the cylinder with a small Strouhal number. The frequency switches in the present study indicates the change of the VIV phenomenon. The hydrodynamic force responses provide more understanding on the VIV of a low mass ratio cylinder.

Study on the Radiation Forces on a Pontoon Type Floating Structure and Submerged Plate : Hydrodynamic Interaction Effect by Submerged Plate (폰툰형 부체구조물과 몰수평판에 작용하는 라디에이션 유체력에 관한 연구 : 몰수평판에 의한 유체력 간섭 영향)

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.683-687
    • /
    • 2007
  • Hydroelastic deformation of pontoon type floating structure in waves is critical in structural design. Therefore, it is necessary to develop additional technology that make to dissipate the wave energy as the submerged horizontal plate. In this study, we investigate the characteristics of hydrodynamic interaction effect by the submerged plate affecting to the radiation forces on a pontoon type floating structure using numerical analysis. We have developed the numerical method based on the composite grid system that consists of moving and fixed grid to compute the radiation forces due to the heaving motion of pontoon type floating structure and submerged plate. The numerical simulations based on the finite difference method are carried out to solve the fully nonlinear free surface involving the breaking waves and compared with the experimental data to confirm the reliability of the numerical method. Then, we discuss the interaction effects on the hydrodynamic forces that could influence on the hydroelastic response of floating structure.

Dynamic Response Characteristics of Tension Leg Platforms with Flexibility Variations in Waves (굽힘강성 변화에 따른 인장계류식 해양구조물의 동적응답 특성)

  • Lee, Chang-Ho;Choi, Chan-Moon;Hong, Bong ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.191-204
    • /
    • 1996
  • The dynamic response characteristics with flexibility variations are examined for presenting the basic data for design of Tension Leg Platforms(TLPs)in waves. A numerical approach is based on the dynamic response analysis theory, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in two-step analysis method. The hydrodynamic interactions among TLP members, such as columns and pontoons are not included in the motion and structural analyse. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element.

  • PDF

A study on characteristics of overtopping rate with Berm's size at the low crest breakwater (저천단 방파제에서의 소단규모에 따른 월파특성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.113-118
    • /
    • 2002
  • Wave overtopping is one of the most important hydraulic responses of breakwater because it significantly affects its functional efficiency, the safety of transit and mooring on the rear side, wave transmission in the sheltered area, rear side armor stones and to some extent, the structural safety itself. The hydrodynamic characteristics of low crest breakwater by the overtopping rate can be summarized as follows: 1. It is better to use maximum overtopping rate than to use mean overtopping rate for design of coastal structures. 2. Maximum overtopping rate was increase with wave steepness (between 0.01 and 0.02). 3. Overtopping rate is decreased when relation length of berm was over wave length.

  • PDF

A Study on the Dynamic Characteristics of Air Foil Bearings Using LS(Least Square)/IV(Instrumental Variable) Method (LS/IV 기법을 이용한 공기 포일 베어링의 동특성 계수에 관한 연구)

  • Jo, Jun-Hyeon;Ryu, Keun;Kim, Chang-Ho;Lee, Yong-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.677-684
    • /
    • 2004
  • This paper describes a method for identifying the dynamic characteristics of air foil bearings for high speed turbomachinerys with the LS/IV method. In fact identifying the characteristics of air foil bearings is very difficult work, and it is tried to identify it. Experiments were conducted to determine the structural dynamic and hydrodynamic characteristics of air foil bearings. Numerical predictions compare the static and dynamic force performances. The housing of the bearing on the journal was driven by the impact hammer which were used to simulate impact force acting on air foil bearings. The characteristics of air foil bearings were extracted from the frequency response function (FRF) by LS(Least Square) method and IV(Instrumental Variable) method. The experiment was tested at 0 rpm and $10000\sim16000rpm$. And the test results were introduced about the dynamic characteristics of air foil bearings, and also compared with theoritical results.

  • PDF

Analysis of Structural Characteristics of HDPE Pipe for Manganese Lifting Test (근해역 양광시험을 위한 HDPE Pipe의 구조특성 연구)

  • Lee, Jae-Hwan;Yoon, Chi-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.86-90
    • /
    • 2011
  • The mining of imitated manganese noodles in 1000 m of seawater is planned for 2012. Thus, it is necessary to prepare the lifting pipes to be used for the test. Because of storage and expense constraints, flexible and economic HDPE pipe is being considered, making it necessary to test the structural safety. Material, pressure-chamber tests and finite element analysis of HDPE pipe for the 1000-m depth were performed. The tangential stiffness of HDPE was obtained through tension and three-point bending material tests and used for a structural analysis. FEA results show that the current sample pipe segment is safe for 1000 m of water pressure, and the stress result is also within the safe value. From the current results, the HDPE pipe seems to be acceptable only for the currently suggested constraints. However, more numerical and pressure tests need to be considered by applying additional physical conditions such as gravitational and hydrodynamic loads, external and internal fluid pressure, axial force induced ship motion, and heavy pump pressure to determine future usage.

Development of a nonlinear seismic response capacity spectrum method for intake towers of dams

  • Cocco, Leonardo;Suarez, Luis E.;Matheu, Enrique E.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.321-341
    • /
    • 2010
  • The seismic-induced failure of a dam could have catastrophic consequences associated with the sudden release of the impounded reservoir. Depending on the severity of the seismic hazard, the characteristics and size of the dam-reservoir system, preventing such a failure scenario could be a problem of critical importance. In many cases, the release of water is controlled through a reinforced-concrete intake tower. This paper describes the application of a static nonlinear procedure known as the Capacity Spectrum Method (CSM) to evaluate the structural integrity of intake towers subject to seismic ground motion. Three variants of the CSM are considered: a multimodal pushover scheme, which uses the idea proposed by Chopra and Goel (2002); an adaptive pushover variant, in which the change in the stiffness of the structure is considered; and a combination of both approaches. The effects caused by the water surrounding the intake tower, as well as any water contained inside the hollow structure, are accounted for by added hydrodynamic masses. A typical structure is used as a case study, and the accuracy of the CSM analyses is assessed with time history analyses performed using commercial and structural analysis programs developed in Matlab.

Comparative Analysis on the Design Conditions for Offshore Wind Power Structures in the Coastal Sea of Korea (한국 연안 해상풍력 구조물의 설계조건 비교분석)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hongyeon;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Offshore wind power structures are subject to coastal hydrodynamic loading such as wind and wave loads. A considerable number of turbines have been installed in Europe, but so far none in Korea. Interest in offshore wind energy is growing in Korea, and it is expected that projects will reach the design stage in the near future. This paper discusses the level of structural reliability implied by the design rules of ABS(2010, 2013) and IEC(2009). Metocean conditions in 4 Korean seas(Gunsan, HeMOSU 1, Mokpo, Jeju) were used in the calibrations to calculate the aerodynamic and hydrodynamic loads as well as the structural responses of the typical designs of offshore wind turbines. Due to the higher variability of the wind and wave climate in hurricane-prone areas, applying IEC strength design criteria in combination with Korea west sea conditions could result in a design with much lower reliability index than what is anticipated from a design in European waters. To achieve the same level of safety as those in European waters, application of ABS 100 year design standards are recommended. Level-1 reliability-based design suitable for the Korean sea state conditions should be introduced because the IEC standards does not consider the typhoon effects in depth and the ABS standards is a WSD design method. In addition, the design equation should be established based on the statistical characteristics of the wind and wave loads of the Korean sea areas.