• Title/Summary/Keyword: Hydrodynamic Mass

Search Result 292, Processing Time 0.029 seconds

Phase-space Analysis in the Group and Cluster Environment: Time Since Infall and Tidal Mass Loss

  • Rhee, Jinsu;Smith, Rory;Choi, Hoseung;Yi, Sukyoung K.;Jaffe, Yara;Candlish, Graeme;Sanchez-Janssen, Ruben
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2017
  • Using the latest cosmological hydrodynamic N-body simulations of groups and clusters, we study how location in phase-space coordinates at z = 0 can provide information on environmental effects acting in clusters. We confirm the results of previous authors showing that galaxies tend to follow a typical path in phase-space as they settle into the cluster potential. As such, different regions of phase-space can be associated with different times since first infalling into the cluster. However, in addition, we see a clear trend between total mass loss due to cluster tides and time since infall. Thus, we find location in phase-space provides information on both infall time and tidal mass loss. We find the predictive power of phase-space diagrams remains even when projected quantities are used (i.e.,line of sight velocities, and projected distances from the cluster). We provide figures that can be directly compared with observed samples of cluster galaxies and we also provide the data used to make them as supplementary data to encourage the use of phase-space diagrams as a tool to understand cluster environmental effects. We find that our results depend very weakly on galaxy mass or host mass, so the predictions in our phase-space diagrams can be applied to groups or clusters alike, or to galaxy populations from dwarfs up to giants.

  • PDF

Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model (집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

Skill Assessments for Evaluating the Performance of the Hydrodynamic Model (해수유동모델 검증을 위한 오차평가방법 비교 연구)

  • Kim, Tae-Yun;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • To evaluate the performance of the hydrodynamic model, we introduced 10 skill assessments that are assorted by two groups: quantitative skill assessments (Absolute Average Error or AAE, Root Mean Squared Error or RMSE, Relative Absolute Average Error or RAAE, Percentage Model Error or PME) and qualitative skill assessments (Correlation Coefficient or CC, Reliability Index or RI, Index of Agreement or IA, Modeling Efficiency or MEF, Cost Function or CF, Coefficient of Residual Mass or CRM). These skill assessments were applied and calculated to evaluate the hydrodynamic modeling at one of Florida estuaries for water level, current, and salinity as comparing measured and simulated values. We found that AAE, RMSE, RAAE, CC, IA, MEF, CF, and CRM are suitable for the error assessment of water level and current, and AAE, RMSE, RAAE, PME, CC, RI, IA, CF, and CRM are good at the salinity error assessment. Quantitative and qualitative skill assessments showed the similar trend in terms of the classification for good and bad performance of model. Furthermore, this paper suggested the criteria of the "good" model performance for water level, current, and salinity. The criteria are RAAE < 10%, CC > 0.95, IA > 0.98, MEF > 0.93, CF < 0.21 for water level, RAAE < 20%, CC > 0.7, IA > 0.8, MEF > 0.5, CF < 0.5 for current, and RAAE < 10%, PME < 10%, CC > 0.9, RI < 1.15, CF < 0.1 for salinity.

Hydrodynamic Simulation of Midwater Trawl System Behavior (중층 트롤 어구 시스템 운동의 유체역학적 시뮬레이션)

  • 차봉진;이춘우;이주희;김현영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.164-171
    • /
    • 2002
  • In this study, a mass-spring model is used to dynamically describe and calculate the shape and movement of a mid-water trawl system. This mathematical model theorizes that the factors constituting the system are the material points and the external forces such as hydrodynamic load, gravity, and buoyancy act on these material points. In addition, it surmises that these material points are connected to each other by springs, the springs do not have any mass, and the internal force acts on these springs. The non-linear differential equations are implicitly integrated with time for guaranteeing a stable solution. The dynamic simulation by the mass-spring model shows the status of the gear such as fishing gear depth, distance between doors, shape of the gear, and tension of each line. It depends on the parameters such as towing force, warp length, force of a sinker, buoyancy of a float, type of door and netting materials. The validity of the model is verified by comparing simulation motions of a trawl system obtained from computed values to those from an actual experiment.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Formation and evolution of mini halos around a dwarf galaxy sized halo - Candidate sites for the primordial globular clusters

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.34.2-34.2
    • /
    • 2015
  • We aim to investigate the formation of primordial globular clusters (GCs) in the isolated dwarf galaxy (${\sim}10^{10}M_{sun}$) with cosmological zoom-in simulations. For this, we modified cosmological hydrodynamic code, GADGET-3, in a way to include the radiative heating/cooling that enables gas particles cool down to T~10K, reionization (z < 8.9) of the Universe, UV shielding ($n_{shield}$ > $0.014cm^{-3}$), and star formation. Our simulation starts in a cubic box of a side length 1Mpc/h with 17 million particles from z = 49. The mass of each dark matter (DM) and gas particle is $M_{DM}=4.1{\times}10^3M_{sun}$ and $M_{gas}=7.9{\times}10^2M_{sun}$, respectively, thus the GC candidates can be resolved with more than hundreds particles. We found the following results: 1) mini halos with the more interactions before merging into the main halo form the more stars and thus have the higher star mass fraction ($M_{star}/M_{total}$), 2) the mini halos with the high $M_{star}/M_{total}$ can survive longer and thus spiral into closer to the galactic center, 3) the majority of them spiral into bulge, but some of them can survive until the last as baryon-dominated system, like the GC.

  • PDF

Applications of Ozone Micro- and Nanobubble Technologies in Water and Wastewater Treatment: Review (정수 및 폐수처리에서 오존 미세기포와 초미세기포 기술의 적용 : 리뷰)

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.481-490
    • /
    • 2017
  • Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.

Experimental and analytical study on hydroelastic vibration of tank (선박내 접수탱크 진동에 대한 실험/이론적 연구)

  • Kim, Kuk-Su;Cho, H.D.;Kong, Y.M.;Heo, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.96-100
    • /
    • 2008
  • In this paper, a experimental and theoretical study is carried out on the hydroelastic vibration for a rectangular bottom and side plate of tank. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to plate vibration. It is assumed that the fluid is imcompressible and inviscid. Assumed mode method is utilized to the plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method. In order to verify the result, modal test was carried out for bottom/side plate of tank model by using impact hammer. It was found the fundamental natural frequency of bottom plate is lower than that of side plate of tank and theoretical result was in good agreement with that of commercial three-dimensional finite element program.

  • PDF

Dispersal of Molecular Clouds by UV Radiation Feedback from Massive Stars

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2017
  • We report the results of three-dimensional radiation hydrodynamic simulations of star cluster formation in turbulent molecular clouds, with primary attention to how stellar radiation feedback controls the lifetime and net star formation efficiency (SFE) of their natal clouds. We examine the combined effects of photoionization and radiation pressure for a wide range of cloud masses (10^4 - 10^6 Msun) and radii (2 - 80 pc). In all simulations, stars form in densest regions of filaments until feedback becomes strong enough to clear the remaining gas out of the system. We find that the SFE is primarily a function of the initial cloud surface density, Sigma, (SFE increasing from ~7% to ~50% as Sigma increases from ~30 Msun/pc^2 to ~10^3 Msun/pc^2), with weak dependence on the initial cloud mass. Control runs with the same initial conditions but without either radiation pressure or photoionization show that photoionization is the dominant feedback mechanism for clouds typical in normal disk galaxies, while they are equally important for more dense, compact clouds. For low-Sigma clouds, more than 80% of the initial cloud mass is lost by photoevaporation flows off the surface of dense clumps. The cloud becomes unbound within ~0.5-2.5 initial free-fall times after the first star-formation event, implying that cloud dispersal is rapid once massive star formation takes place. We briefly discuss implications and limitations of our work in relation to observations.

  • PDF

Computation of Laryngeal Flow and Sound through a Dynamic Model of the Vocal Folds (동적 성대 모델을 이용한 후두 내 유동 및 음향장에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.21-24
    • /
    • 2008
  • The present study numerically investigates the glottal airflow characteristics as well as acoustic features of phonation fully coupled with dynamic behavior of vocal folds. The vocal folds are described by a low-dimensional body-covered model characterized by bio-mechanical parameters such as glottal width, vocal folds stiffness, and subglottal pressure. The flow in the vocal tract is modeled as an incompressible, axisymmetric form of the Navier-Stokes equations (INS), while the acoustic field is predicted by the linearized perturbed compressible equations (LPCE). The computed result shows that a two-mass model of vocal folds is sufficient to reproduce temporal variations in oral airflow and glottis motion produced by female speakers. It is also found that i) the glottal width has a significant effect on the amplitude of glottal flow, and thus on the amplitude of acoustic wave in the vocal tract, ii) the vocal fold tension is the main control parameter for the fundamental frequency of phonation, iii) the subglottal pressure plays an appreciable role on reproduction of the self-sustained oscillation of vocal folds, and iv) the strength of pulsating airflow and vortical structures are primarily affected by glottal width and subglottal pressure, and are closely related to pitch, loudness, and voice quality. Finally, more comprehensive explanation about the difference between one- and two-mass models is presented with discussion of effectiveness of vocal folds oscillation and voice quality.

  • PDF