• Title/Summary/Keyword: Hydrodynamic Interaction forces

Search Result 77, Processing Time 0.02 seconds

A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation (3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구)

  • Ha, Y.R.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.

Seismic Behaviors of Concrete-Suction-Type Offshore Wind Turbine Supporting Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 콘크리트 석션식 해상풍력 지지구조물의 지진거동 특성)

  • Lee, Jin Ho;Jin, Byeong-Moo;Bae, Kyung-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, characteristics of seismic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures are investigated. Applying hydrodynamic pressure from the surrounding sea water and interaction forces from the underlying soil to the structural system which is composed of RNA, the tower, and the supporting structure, a governing equation of the system is derived and its earthquake responses are obtained. It can be observed from the analysis results that the responses are significantly influenced by soil-structure interaction because dynamic responses for higher natural vibration modes are increased due to the flexibility of soil. Therefore, the soil-structure interaction must be taken into consideration for accurate assessment of dynamic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures.

A Study on Interaction between Two Vessels Passing Close to Each Other on Parallel Courses and Calculation of Collision Time by its effect (근접 항해하는 선박의 상호작용과 충돌시간 계산에 관한 연구)

  • Lee Chun-Ki;Yoon Jeom-Dong;Kang Il-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.315-320
    • /
    • 2006
  • It is well known that the ship manoeuvring motion is greatly affected by hydrodynamic forces and moments acting between two vessels passing too close to each other in confined waters, such as in a harbour or narrow channel. This interaction between two vessels could be assumed to be the functions of the longitudinal distance, transverse distance and their speeds. The aim of this study is to calculate the interaction between two vessels passing close to each other on parallel courses by simulation, and to estimate the effect of rudder action and time at collision through simulation under the condition of various longitudinal distances and different speed-ratios of the two vessels.

A Study on Interaction between Two Vessels Passing Close to Each Other on Parallel Courses and Calculation of Collision Time by its effect (근접 항해하는 선박의 상호작용과 충돌시간 계산에 관한 연구)

  • Lee Chun-Ki;Yoon Jeom-Dong;Kang Il-Kwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.55-60
    • /
    • 2006
  • It is well known tint the ship manoeuvring motion is greatly affected by hydrodynamic forces and moments acting between two vessels passing too close to each other in confined waters, such as in a harbour or narrow channel. This interaction between two vessels could be assumed to be the functions of the longitudinal distance, transverse distance and their speeds. The aim of this study is to calculate the interaction between two vessels passing close to each other on parallel courses by simulation, and to estimate the effect of rudder action and time of collision through simulation under the condition of various longitudinal distances and different speed-ratios of the two vessels.

  • PDF

DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary

  • Zhang, Zhimeng;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.465-474
    • /
    • 2020
  • Vortex-induced vibrations of a yawed flexible cylinder near a plane boundary are numerically investigated at a Reynolds number Ren= 500 based on normal component of freestream velocity. Free to oscillate in the in-line and cross-flow directions, the cylinder with an aspect ratio of 25 is pinned-pinned at both ends at a fixed wall-cylinder gap ratio G/D = 0.8, where D is the cylinder diameter. The cylinder yaw angle (α) is varied from 0° to 60° with an increment of 15°. The main focus is given on the influence of α on structural vibrations, flow patterns, hydrodynamic forces, and IP (Independence Principle) validity. The vortex shedding pattern, contingent on α, is parallel at α=0°, negatively-yawed at α ≤ 15° and positively-yawed at α ≥ 30°. In the negatively- and positively-yawed vortex shedding patterns, the inclination direction of the spanwise vortex rows is in the opposite and same directions of α, respectively. Both in-line and cross-flow vibration amplitudes are symmetric to the midspan, regardless of α. The RMS lift coefficient CL,rms exhibits asymmetry along the span when α ≠ 0°, maximum CL,rms occurring on the lower and upper halves of the cylinder for negatively- and positively-yawed vortex shedding patterns, respectively. The IP is well followed in predicting the vibration amplitudes and drag forces for α ≤ 45° while invalid in predicting lift forces for α ≥ 30°. The vortex-shedding frequency and the vibration frequency are well predicted for α = 0° - 60° examined.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Analysis on the Dynamic Responses of Fishing Vessels in a Seaway (파랑중 어선의 동력학 해석)

  • 이희상
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • Ships in a seaway will encounter dangerous situation, such as slamming, stranding, and capsizing. The number of capsizing is small, but the loss due to them is very large from the viewpoint of human life, property, and the environmental pollution. The number of capsizing of fishing vessels is about 62% of total number of capsizing, and the half of them is originated from the operational mistake in a seaway. So the dynamics and the capsizing phenomena are to be studied, and the guide for the safe operation of a fishing vessel in a seaway are to be specified. The hydrodynamic forces consist of radiation forces (which are due to the motion of a ship), Froude-Krylov forces (which is due to the incoming waves), and diffraction forces (which is due to the wave and ship interaction). These forces are calculated by well-known strip method. Using the calculated forces, the motion of a ship in a regular sea is obtained. In the real seaway, the waves are very irregular, therefore the statistical analysis is very helpful. In this paper, using the results of the motion in a regular seaway and the wave spectrum, the motion in a irregular seaway are obtained and analyzed.

  • PDF

Aerodynamic response of articulated towers: state-of-the-art

  • Zaheer, M. Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.97-120
    • /
    • 2008
  • Wind and wave loadings have a predominant role in the design of offshore structures in general, and articulated tower in particular for a successful service and survival during normal and extreme environmental conditions. Such towers are very sensitive to the dynamic effects of wind and wind generated waves. The exposed superstructure is subjected to aerodynamic loads while the submerged substructure is subjected to hydrodynamic loads. Articulated towers are designed such that their fundamental frequency is well below the wave frequency to avoid dynamic amplification. Dynamic interaction of these towers with environmental loads (wind, waves and currents) acts to impart a lesser overall shear and overturning moment due to compliance to such forces. This compliancy introduces geometric nonlinearity due to large displacements, which becomes an important consideration in the analysis of articulated towers. Prediction of the nonlinear behaviour of these towers in the harsh ocean environment is difficult. However, simplified realistic mathematical models are employed to gain an important insight into the problem and to explore the dynamic behaviour. In this paper, various modeling approaches and solution methods for articulated towers adopted by past researchers are reviewed. Besides, reliability of articulation system, the paper also discussed the design, installation and performance of articulated towers around the world oceans.

Incorporating uplift in the analysis of shallowly embedded pipelines

  • Tian, Yinghui;Cassidy, Mark J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.29-48
    • /
    • 2011
  • Under large storm loads sections of a long pipeline on the seabed can be uplifted. Numerically this loss of contact is extremely difficult to simulate, but accounting for uplift and any subsequent recontact behaviour is a critical component in pipeline on-bottom stability analysis. A simple method numerically accounting for this uplift and reattachment, while utilising efficient force-resultant models, is provided in this paper. While force-resultant models use a plasticity framework to directly relate the resultant forces on a segment of pipe to the corresponding displacement, their historical development has concentrated on precisely modelling increasing capacity with penetration. In this paper, the emphasis is placed on the description of loss of penetration during uplifting, modelled by 'strain-softening' of the force-resultant yield surface. The proposed method employs uplift and reattachment criteria to determine the pipe uplift and recontact. The pipe node is allowed to become free, and therefore, the resistance to the applied hydrodynamic loads to be redistributed along the pipeline. Without these criteria, a localised failure will be produced and the numerical program will terminate due to singular stiffness matrix. The proposed approach is verified with geotechnical centrifuge results. To further demonstrate the practicability of the proposed method, a computational example of a 1245 m long pipeline subjected to a large storm in conditions typical of offshore North-West Australia is discussed.

Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow

  • Chen, Weilin;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • Vortex-induced vibration of three circular cylinders (each of diameter D) in an equilateral triangular arrangement is investigated using the immersed boundary method. The cylinders, with one placed upstream and the other two side-by-side downstream, are free to vibrate in the cross-flow direction. The cylinder center-to-center spacing L is adopted as L/D = 2.0. Other parameters include the Reynolds number Re = 100, mass ratio $m^*=2.0$, reduced velocity $U_r=2{\sim}15$ and damping ratio ${\zeta}=0$. Cylinder vibration responses are dependent on $U_r$ and classified into five regimes, i.e. Regime I ($U_r{\leq}3.2$), Regime II ($3.2<U_r{\leq}5.0$), Regime III ($5.0<U_r{\leq}6.4$), Regime IV ($6.4<U_r{\leq}9.2$) and Regime V ($U_r>9.2$). Different facets of vibration amplitude, hydrodynamic forces, wake patterns and displacement spectra are extracted and presented in detail for each regime.