• Title/Summary/Keyword: Hydrodechlorination

Search Result 5, Processing Time 0.023 seconds

Detoxification of PCBs Containing Transformer Oil by Catalytic Hydrodechlorination in Supercritical Fluids (초임계유체 내 수첨탈염소반응에 의한 PCBs가 함유된 절연유의 무해화 연구)

  • Choi, Hye-Min;Kim, Jae-Hoon;Kim, Jae-Duck;Kang, Jeong-Won
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Catalytic hydrodechlorination of PCBs (polychlorinated biphenyls) included in the transformer oil was carried out to detoxify PCBs and to recycle the treated oil. Catalysts such as 0.98 wt% Pt and 0.79 wt% Pd on ${\gamma}$-alumina (${\gamma}-Al_2O_3$) support, 12.8 wt% Ni on ${\gamma}-Al_2O_3$, and 57.6 wt% Ni on silica-alumina ($SiO_2-Al_2O_3$) support were used for the catalytic hydrodechlorination. Various supercritical fluids such as carbon dioxide, propane and isobutane were used as reaction media. The effects of reaction temperature, reaction time, catalysts, and supercritical fluids on the catalytic hydrodechlorination were examined in detail. The detoxification degree increased in the order of Ni > Pd > Pt. This is possibly due to higher metal loading and larger metal size of the Ni catalyst. Below $175^{\circ}C,\;scCO_2$ was found as the most effective reaction media for the catalytic hydrodechlorination of PCBs included in the transformer oil.

Reductive Degradation Kinetics and Pathways of Chlorophenolic Organic Pollutants by Nickel-Coated Zero Valent Iron (니켈로 코팅된 영가금속을 이용한 염소계 페놀화합물의 반응경로 및 반응율 평가)

  • Shin, Seung-Chul;Kim, Young-Hun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.487-493
    • /
    • 2006
  • Reductive dechlorination of chlorophenols by nickel coated iron was investigated to understand the feasibility of using Ni/Fe for the in situ remediation of contaminated groundwater. Zero Valent Iron(ZVI) was amended with Ni(II) ions to form bimetal(Ni/Fe). Dechlorination of five chlorophenol compounds and formation of intermediates were examined using Ni/Fe. Rate constant for each reaction pathway was quantified by the numerical integration of a series of differential rate equation. Experimental results showed that the sequence of hydrodechlorination rate constant was in the order of 2-CP>4-CP>2,4-DCP>2,4,6-TCP>2,6-DCP. The hydrodechlorination pathways for the conversion of each chlorophenol compound involves a full dechlorination to phenol via both concerted and stepwise mechanisms. Reaction pathways and corresponding kinetic rate constants were suggested based on the experiments and numerical simulations.

Thermal Degradation Characteristics of Carbon Tetrachloride in Excess Hydrogen Atmosphere (과잉수소 반응조건하에서 사염화탄소의 고온 분해반응 특성 연구)

  • Won, Yang-Soo;Jun, Kwan-Soo;Choi, Seong-Pil
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.569-577
    • /
    • 1996
  • pure compound chloromethanes; methyl chloride, methylene chloride, chloroform and The carbon tetrachloride were used as a model of chlorocarbon system with Cl/H ratio to investigate thermal stability and hydrodechlorination process of carbon tetrachloride under excess hydrogen atmosphere. The parent thermal stability on basis of temperature required for 99% destruction at 1 second no was evaluated as $875^{\circ}C$ for $CH_3Cl$, $780^{\circ}C$ for $CH_2Cl_2$, $675^{\circ}C$ for $CHCl_3$ and $635^{\circ}C$ for $CCl_4$. Chloroform was thermally less stable than $CCl_4$ at fairly low temperatures $(<570^{\circ}C).$ The lion of $CCl_4$ became more sensitive to increasing temperature, and $CCl_4$ was degraded CHCl3 at above $570^{\circ}C.$ The number and quantity of chlorinated products decreases with increasing temperature for the Product distribution of $CCl_4$ decomposition reaction system. Formation of non-chlorinated hydrocarbons such as $CH_4$, $C_2H_4$ and C_2H_6$ increased as the temperature rise and particularly small amount of methyl chloride was observed above $850^{\circ}C$ in $CC1_4$/$H_2$ reaction system. The less chlorinated products are more stable, with methyl chloride the most stable chlorocarbon in this reaction system.

  • PDF

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

  • Gunawardana, Buddhika;Singhal, Naresh;Swedlund, Peter
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.187-203
    • /
    • 2011
  • Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions (열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성)

  • Kim, Yong-Je;Won, Yang-Soo
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2010
  • Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.