• Title/Summary/Keyword: Hydrocarbons-degrading microbes

Search Result 3, Processing Time 0.019 seconds

디젤 오염토양에서 화학적 산화에 의한 PAH 분해특성 및 PAH 분해미생물의 거동

  • 정해룡;안영희;김인수;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.22-25
    • /
    • 2002
  • The effect of in-situ chemical oxidation on the indigenous soil microorganisms (total microbes and PAH-degrading microbes) and contaminant removal were investigated. Field soil contaminated with diesel in gas station was collected and the soil was treated from 0 to 900 minutes by in-situ ozonation as chemical remediation. The treated soil samples were incubated with supplying oxygen during the 9 weeks to understand the characteristics of microbes regrowth, damaged by ozone. The sharp decrease of aromatic fraction and TPH was observed within 60 minutes of ozone application and aromatic fraction and TPH then slowly decreased. The phenanthren-degrading bacteria were the most sensitive to ozonation, because 1 hour of ozonation reduced the microbes from 10$^{6}$ CFU/g-soil to below detection limits.

  • PDF

Selective Enrichment to Obtain an Indigenous Microbial Consortium Degrading Recalcitrant TPHs(total petroleum hydrocarbons) from Petroleum-contaminated Soil in Kuwait (쿠웨이트 원유오염 토양 내 잔류 난분해성 유기물 분해능 지닌 토착 미생물 배양체 획득을 위한 선택적 계대배양 실험 연구)

  • Ha, Jinho;Kim, Seonghoon;Lim, Hyunsoo;Jung, Woosik;Kim, Dajung;Lee, Keumyoung;Park, Joonhong
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.20-26
    • /
    • 2021
  • In this work, an indigenous microbial consortium was obtained by selectively cultivating microbes using a long-aged petroleum-contaminated soil (Kuwait) containing recalcitrant petroleum hydrocarbons. The obtained microbial consortium was able to grow on and degrade the remaining petroleum hydrocarbons which could not have been utilized by the indigenous microbes in the original Kuwait soil. The following microbial community analysis using 16S rRNA gene sequencing suggested that the enhanced degradation of the remaining recalcitrant petroleum hydrocarbons by the novel microbial consortium may have been attributed to the selected bacterial populations belonging to Bacillus, Burkholderia, Sphingobacterium, Lachnospiraceae, Prevotella, Haemophilus, Pseudomonas, and Neisseria.

Optimization of nutrients requirements for bioremediation of spent-engine oil contaminated soils

  • Ogbeh, Gabriel O.;Tsokar, Titus O.;Salifu, Emmanuel
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.484-494
    • /
    • 2019
  • This paper presents a preliminary investigation of the optimum nutrients combination required for bioremediation of spent-engine oil contaminated soil using Box-Behnken-Design. Three levels of cow-manure, poultry-manure and inorganic nitrogen-phosphorus-potassium (NPK) fertilizer were used as independent biostimulants variables; while reduction in total petroleum hydrocarbon (TPH) and total soil porosity (TSP) response as dependent variables were monitored under 6-week incubation. Ex-situ data generated in assessing the degree of biodegradation in the soil were used to develop second-order quadratic regression models for both TPH and TSP. The two models were found to be highly significant and good predictors of the response fate of TPH-removal and TSP-improvement, as indicated by their coefficients of determination: $R^2=0.9982$ and $R^2=1.000$ at $p{\leq}0.05$, respectively. Validation of the models showed that there was no significant difference between the predicted and observed values of TPH-removal and TSP-improvement. Using numerical technique, the optimum values of the biostimulants required to achieve a predicted maximum TPH-removal and TSP-improvement of 67.20 and 53.42%-dry-weight per kg of the contaminated soil were as follows: cow-manure - 125.0 g, poultry-manure - 100.0 g and NPK-fertilizer - 10.5 g. The observed values at this optimum point were 66.92 and 52.65%-dry-weight as TPH-removal and TSP-improvement, respectively.