• 제목/요약/키워드: Hydrocarbon flame

검색결과 112건 처리시간 0.024초

저온열탈착기술을 이용한 에틸렌 및 저분자 탄화수소 분석방법 연구 (A Study of Analytical Method for Ethylene and Low Weight Hydrocarbons (LWHC) using Thermal Desorption and Gas Chromatography-Flame Ionization Detector with (TD-GC-FID))

  • 김보원;김기현;김용현;안정현
    • 한국대기환경학회지
    • /
    • 제30권1호
    • /
    • pp.77-87
    • /
    • 2014
  • In this study, an experimental approach to measure a suite of low weight hydrocarbons was investigated with an emphasis on ethylene (EL) along with many others (ethane (EA), propane (PA), propylene (PL), n-butane (BA), acetylene (AL), methyl acetylene (ML)). Their concentrations were quantified using GC-FID system equipped with thermal desorption (TD) system. The TD-based analysis was conducted using both Link Tube/Thermal Desorber (LT/TD) method and Modified Injection through a Thermal Desorption (MITD) method. The results of these analyses were evaluated in a number of respects. The system allowed the detection of all compounds except methane with the mean response factor (RF) of 10.28 (EA) to 11.94 (PL). The method detection limits of target compounds were seen in the range of 0.027 (ML) to 0.146 ng (BA). The emission flux of some environmental samples (fruits), when measured using a small flux chamber system, fell in the range of 0.14 (AL: Kiwi) to $181ng{\cdot}g^{-1}{\cdot}hr^{-1}$ (EL: Apple Peel). The results of this study confirm that the experimental approach developed in this study allows to accurately measure emissions of low weight hydrocarbons (LWHC) like ethylene from various natural and man-made source processes.

정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구 (An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber)

  • 조용석;이성욱;원상연;박영준;김득상
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.

개질기용 Anode off gas와 LNG의 예혼합 연소특성 (Premixed Combustion of the Mixture of Anode-off Gas from Reformer and LNG)

  • 이재영;이필형;한상석;박창수;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2198-2203
    • /
    • 2008
  • Hydrogen which can be produced through reforming process of hydrocarbon fuel is supplied into anode side of fuel cell system. In the fuel cell, only 70% of hydrogen is consumed through electrochemical reaction and 30% hydrogen passed by as anode off gas. When electrical output of fuel cell is within range of 1.0 to 3.0kW, burner for the reformer uses only anode off gas. And it uses mixture gas of anode off gas and LNG within range of 3.5 to 5.0kW in electrical output. CHEMKIN 4.1 program's Premixed code was used for calculating the properties of each gas. Results show that burning velocity and adiabatic flame temperature are 34.4cm/s, 1681.7K at equivalence ratio 0.8 within range of 1.0kW to 3.0kW and for cases of 3.5kW, 5.0kW, of electrical output, burning velocity and adiabatic flame temperature represent 30.5, 29.8cm/s and 1722.8, 1750K respectively. CO shows the lowest emission index at equivalence ratio 0.8 and NOx reveals the highest emission index at equivalence ratio 1.

  • PDF

가정용 연료전지 시스템 내부의 수소 누출에 관한 전산해석 (A CFD Study on the Hydrogen Leakage for Residential Fuel cell System)

  • 안재욱;정태용;신동훈;남진현;김영규;박주원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2026-2031
    • /
    • 2007
  • Hydrogen is receiving much research attention as an alternative substitute for hydrocarbon fuels these days due to its cleanliness and renewability. However, hydrogen should be used with caution because of its high propensity for leak and wide flammable range. This study deals with a situation that hydrogen leaks and then forms a flammable mixture inside 1kW class residential fuel cell. The residential fuel cell was modeled as a box-shaped chamber with vent openings at the top and bottom, filled with various components such as reformer, desulfurizer, fuel cell stack and humidifier. Computational fluid dynamics (CFD) was used to simulate the diffusion, buoyant flow and accumulation of leaked hydrogen in the modeled chamber. From the simulation, the risk region vulnerable to flame was identified and the methods to minimize such hazardous region was discussed. When the vent openings are 1% of the total surface, as the quantity of hydrogen leakage increases the risk regions increases accordingly. As the vent openings of the total surface increased from 1% to 2.3%, averaged hydrogen mole fraction is under 1% in the system.

  • PDF

LPG-DME 성층혼합 압축착화 엔진 (LPG-DME Stratified Charge Compression Ignition Engine)

  • 배충식;염기태
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.672-679
    • /
    • 2007
  • The combustion characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge and stratified charge conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion flame region according to the injection timing of LPG. The hydrocarbon emission of stratified charge combustion was lower than that of homogeneous charge combustion. However, the carbon monoxide and nitrogen oxide emission of stratified charge combustion were slightly higher than those of the homogeneous charge region. The indicated mean effective pressure was reduced at stratified charge region, while it was almost same level as the homogeneous charge combustion region at diffusion combustion region. The start of combustion timing of the stratified charge combustion and diffusion combustion region were advanced compared to the homogeneous charge combustion. It attributed to the higher cetane number and mixture temperature distribution which locally stratified. However, the knock intensity was varied as the homogeneity of charge was increased.

정적연소기내에서의 분위기 온도 및 압력에 따른 혼합기 분포에 관한 성층화 정도 특성 (Stratified Degree Characteristics on Fuel Mixture According to Ambient Temperature and Pressure in a Constant Volume Combustion Chamber)

  • 이기형;이창식;이창희
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.180-188
    • /
    • 2005
  • It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption technology, it produces much unburned hydrocarbon and soot because of heterogeneous equivalence ratio in the combustion chamber. Therefore, the stratified mixture formation technology is very important to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The local effect of mixture formation according to control air-fuel distribution in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, we found that the flame propagation speed increase with swirl flow and the swirl promotes the formation of fuel and air mixture.

Standardizing GC-FID Measurement of Nonmethane Hydrocarbons in Air for International Intercomparison Using Retention Index and Effective Carbon Number Concept

  • Liaw, Sheng-Ju;Tso, Tai-Ly
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.807-814
    • /
    • 1995
  • Accurate measurements of ozone precursors are required to understand the process and extent of ozone formation in rural and urban areas. Nonmethane hydrocarbons (NMHCs) have been identified as important ozone precursors. Identification and quantification of NMHCs are difficult because of the large number present and the wide molecular weight range encountered in typical air samples. A major plan of the research team of the Climate and Air Quality Taiwan Station (CATs) was the measurement of atmospheric nonmethane hydrocarbons. An analytical method has been development for the analysis of the individual nonmethane hydrocarbons in ambient air at ppb (v) and subppb(v) levels. The whole ambient air samples were collected in canisters and analyzed by GC-FID with $Al_2O_3$/KCl PLOT column. Our targeted for quantitative analysis 43 compounds that may be substantial contributors to ozone formation. The retention indices and molar response factors of some commercially available $C_2{\sim}C_{10}$ hydrocarbons were determined and used to identify and quantify air samples. A quality assurance program was instituted to ensure that good measurements were made by participating in the International Nonmethane Hydrocarbon Intercomparison Experiments (NOMHICE).

  • PDF

2단분사법에 따른 예혼합압축착화엔진의 연소 및 배기특성 (Effects of Two-Stage Injection on Combustion and Exhaust Emission Characteristics in a HCCI Engine)

  • 국상훈;박철웅;최욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.32-39
    • /
    • 2004
  • HCCI (Homogeneous Charge Compression Ignition) combustion has a great advantage in reducing NOx (Nitrogen Oxides) and PM (Particulate Matter) by lowering the combustion temperature due to spontaneous ignitions at multiple sites in a very lean combustible mixture. However, it is difficult to make a diesel-fuelled HCCI possible because of a poor vaporability of the fuel. To resolve this problem, the two-stage injection strategy was introduced to promote the ignition of the extremely early injected fuel. The compression ratio and air-fuel ratio were found to affect not only the ignition, but also control the combustion phase without a need for the intake-heating or EGR (Exhaust Gas Recirculation). The ignition timing could be controlled even at a higher compression ratio with increased IMEP (Indicated Mean Effective Pressure). The NOx (Nitrogen Oxides) emission level could be reduced by more than 90 % compared with that in a conventional DI (Direct Injection) diesel combustion mode, but the increase of PM and HC (Hydrocarbon) emissions due to over-penetration of spray still needs to be resolved.

Structural Response of Offshore Plants to Risk-Based Blast Load

  • Heo, YeongAe
    • Architectural research
    • /
    • 제15권3호
    • /
    • pp.151-158
    • /
    • 2013
  • Offshore oil and gas process plants are exposed to hazardous accidents such as explosion and fire, so that the structural components should resist such accidental loads. Given the possibilities of thousands of different scenarios for the occurrence of an accidental hazard, the best way to predict a reasonable size of a specific accidental load would be the employment of a probabilistic approach. Having the fact that a specific procedure for probabilistic accidental hazard analysis has not yet been established especially for explosion and fire hazards, it is widely accepted that engineers usually take simple and conservative figures in assuming uncertainties inherent in the procedure, resulting either in underestimation or more likely in overestimation in the topside structural design for offshore plants. The variation in the results of a probabilistic approach is determined by the assumptions accepted in the procedures of explosion probability computation, explosion analysis, and structural analysis. A design overpressure load for a sample offshore plant is determined according to the proposed probabilistic approach in this study. CFD analysis results using a Flame Acceleration Simulator, FLACS_v9.1, are utilized to create an overpressure hazard curve. Moreover, the negative impulse and frequency contents of a blast wave are considerably influencing structural responses, but those are completely ignored in a widely used triangular form of blast wave. An idealistic blast wave profile deploying both negative and positive pulses is proposed in this study. A topside process module and piperack with blast wall are 3D FE modeled for structural analysis using LS-DYNA. Three different types of blast wave profiles are applied, two of typical triangular forms having different impulse and the proposed load profile. In conclusion, it is found that a typical triangular blast load leads to overestimation in structural design.

LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향 (Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF