• Title/Summary/Keyword: Hydrocarbon flame

Search Result 112, Processing Time 0.023 seconds

A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition (흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구)

  • 황승환;조용석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

Characteristics of HC Emissions by Starting Conditions in an SI Engine (가솔린 기관의 시동조건에 따른 HC의 배출특성)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

Hybrid RANS/LES simulation of Base-Bleed in Supersonic Flows (초음속 유동장에서 기저 분출 유동의 대와류 난류 모사)

  • Shin, Jae-Ryul;Won, Su-Hee;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.332-335
    • /
    • 2008
  • The purpose of this study is analysis of flow field where is around of injector of supersonic combustor which is bluff-body stabilized flame and hyper-mixer type of supersonic combustor injector by using hydrogen or hydrocarbon fuel. Various schemes are evaluated to supersonic backward step flow filed with massive separation region in validation step. Compounded scheme of 5th-order TVD-MUSCL, Roe FDS, S-A DES/DDES has a good performance in base and base-bleed flow.

  • PDF

Numerical Study on the Characteristics of Spray Combustion Processes in the DME and n-heptane Fueled Diesel-like Engine Conditions (DME 및 n-Heptane 연료의 디젤엔진 조건에서 분무연소특성 해석)

  • Yu, Yong-Wook;Suk, Jun-Ho;Lee, Sang-Kil;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes against the conventional hydrocarbon liquid fuels, the sequence of the comparative analysis have been systematically made for DME and n-heptane liquid fuels. To realistically represent the physical processes involved in the spray combustion, this studyemploys the hybrid breakup model, the stochastic droplet tracking model, collision model, high-pressure evaporation model, and transient flamelet model with detailed chemistry. Based on numerical results, the detailed discussions are made in terms of the autoignition, spray combustion processes, flame structure, and turbulence-chemistry interaction in the n-heptane and DME fueled spray combustion processes.

  • PDF

A Study on the Formation Characteristics of NO, CO and THC with respect to the Structure of the Swirl Flame (선회화염 의 구조 에 따른 NO , CO 및 THC 생성특성 에 관한 연구)

  • 윤재건;명현국;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.210-216
    • /
    • 1984
  • An investigation of the effects of the size of mixing region determined by changing the position of fuel injection has been carried out. Measurements were made: the distribution of temperature and concentration profiles of the stable gas species, nitrogen oxide and total hydrocarbon in the flames. The results of this investigation show that variations of the size of mixing region produce major changes to the three type flow fields which significantly influence pollutant (NO, CO and THC) formation and energy release.

Supersonic Combustion Studies for SCRamjet Engines

  • Driscoll, James F.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.1-14
    • /
    • 2004
  • Experiments were performed in order to examine the stability of hydrocarbon-fueled flames in cavity flameholders in supersonic airflows. Methane and ethylene were burned in two different cavity configurations having aft walls ramped at 22.5 and 90$^{\circ}$. Air stagnation temperatures were 590 K at Mach 2 and 640 K at Mach 3. Lean blowout limits showed dependence on the air mass flowrates. Visual observations, planar laser induced fluorescence (PLIF) of nitric oxide (NO), and Schlieren imaging were used to investigate these phenomena. Large differences were noted between cavity floor and cavity ramp injection schemes. Cavity ramp injection provided better performance in most cases. Ethylene pilots have a wider range of stable operation than methane. Fuel flowrates at ignition showed similar trends as lean blowout limits, but higher flowrates were required.

  • PDF

Light Extinction Characteristics of Soot Particle in Hydrocarbon Inverse Diffusion Flames. (역 확산화염 내 매연입자에 의한 광소멸 특성 연구)

  • Lim, Sangchul;Lee, Seunghoon;Ahn, Teakook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.257-260
    • /
    • 2015
  • Light extinction characteristics of soot particles in ethylene and propane inverse diffusion flames have been experimentally investigated. The measured data suggested that the refractive index of soot particles varies with light wavelength due to PAH contents existing during the soot growth process. The results showed that the scattering effect is less important as the size of secondary particles rarely affects the optical properties of the soot even when the size is large enough to deviate from Rayleigh assumptions.

  • PDF

Improving Performance and Emissions in a Diesel Engine Dual Fueled with Compressed Natural Gas (CNG와 경유의 2원 연료 디젤기관의 성능 및 배출가스 개선을 위한 실험연구)

  • ;Masahiro Shioji
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2000
  • This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual fueled with natural gas. Dual fuelling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Suction air quantity and injection timing controls are very useful to improve emissions and thermal efficiency at low load.

  • PDF

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.