• 제목/요약/키워드: Hydro-thermal coupled analysis

Search Result 22, Processing Time 0.029 seconds

A numerical simulation and validation of heat pump using standing column well(SCW) (스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 수치적 모델링과 검증)

  • Chang, Jae-Hoon;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.785-790
    • /
    • 2010
  • Geothermal energy is gaining wide attention as a highly efficient renewable energy and being increasingly used for heating/cooling systems of buildings. The standing column well (SCW) is especially efficient, cost-effective, and suitable for Korean geological and hydrological conditions. However, a numerical model that simulates the SCW has not yet been developed and applied in Korea. This paper describes the development of the SCW numerical model using a finite-volume analysis program. The model performs the hydro-thermal coupled analyses and simulates heat transfer through advection, convection, and conduction. The accuracy of the model was verified through comparisons with field data measured at SCWs in Korea. Comparisons indicated that the SCW numerical model can closely predict the performance of a SCW.

  • PDF

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

Numerical Studies on Thermo-Hydro-Mechanical Couplings for Underground Heat Storage. (암반내 축열시스템의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 이희석;김명환;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 1998
  • This paper investigates coupled thermal, mechanical and hydraulic phenomena in deep rock mass especially for underground heat storage system. Firstly, concepts of underground heat storage were presented and coupling phenomena in this area were illustrated. In order to understand the basic mechanism of thermal, hydraulic and deformation behavior in rock cavern disturbed by thermal gradient about 10$0^{\circ}C$, various numerical experiments were conducted using several codes. The study involves the behavior of fractured rock mass including rock joint. In spite of the limitation of codes modelling fully coupled effects, these codes could be applied in analysis of underground heat storage. The heat loss in rock mass, which is a major factor in heat storage, is insignificant in all results.

  • PDF

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

Benchmark Numerical Simulation on the Coupled Behavior of the Ground around a Point Heat Source Using the TOUGH-FLAC Approach (TOUGH-FLAC 기법을 이용한 점열원 주변지반의 복합거동에 대한 벤치마크 수치모사)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The robustness of a numerical method means that its computational performance is maintained under various modeling conditions. New numerical methods or codes need to be assessed for robustness through benchmark testing. The TOUGH-FLAC modeling approach has been applied to various fields such as subsurface carbon dioxide storage, geological disposal of spent nuclear fuel, and geothermal development both domestically and internationally, and the modeling validity has been examined by comparing the results with experimental measurements and other numerical codes. In the present study, a benchmark test of the TOUGH-FLAC approach was performed based on a coupled thermal-hydro-mechanical behavior problem with an analytical solution. The analytical solution is related to the temperature, pore water pressure, and mechanical behavior of a fully saturated porous medium that is subjected to a point heat source. The robustness of the TOUGH-FLAC approach was evaluated by comparing the analytical solution with the results of numerical simulation. Additionally, the effects of thermal-hydro-mechanical coupling terms, fluid phase change, and timestep on the computation of coupled behavior were investigated.

A numerical study on the coupled thermo-hydro-mechanical behavior of discontinuous rock mass (불연속암반에서의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 김명환;이희석;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • A finite element code was developed to analyze coupled thermo-hydro-mechanical phenomena. This code is based on the finite element formulation provided by Noorishad et al. (1984) and Joint behavior was simulated Goodman's joint constitutive model. The developed code was applied for T-H-M coupling analysis for two kinds of shaft models, with a joint or without a joint respectively. For a model without a joint, temperature increased from the shaft wall to outward evidently. The radial displacement showed opposite directions of outward and inward at some distance from shaft wall. For a model with a joint, closure of joint was found due to thermal expansion. The temperature distribution along a joint showed relatively lower than that of rock matrix because of low thermal conductivity and high specific heat of water. And it could be concluded that effects of thermal flow to joint were more than that of hydraulic flow in a rock mass.

  • PDF

Numerical Simulation of Standing Column Well Ground Heat Pump System Part 1: Validation of the Numerical Model (단일심정 지열히트펌프의 수치적 모델링 Part I: 수치해석 모델 검증)

  • Park, Du-Hee;Kim, Kwang-Kyun;Kwak, Dong-Yeop;Chang, Jae-Hoon;Park, Si-Sam
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.33-43
    • /
    • 2010
  • Geothermal energy is gaining wide attention as a highly efficient renewable energy and being increasingly used for heating/cooling systems of buildings. The standing column well (SCW) is especially efficient, cost-effective, and suitable for Korean geological and hydrological conditions. However, a numerical model that simulates the SCW has not yet been developed and applied in Korea. This paper describes the development of the SCW numerical model using a finite-volume analysis program. The model, through hydro-thermal coupled analyses, simulates heat transfer through advection, convection, and conduction. The accuracy of the model was verified through comparisons with field data measured at SCWs in the U.S. and Korea. Comparisons indicated that the SCW numerical model can closely predict the performance of a SCW. The numerical model was used to perform a comprehensive parametric study in the companion paper.

Simulation of Ice Ring Formation around Cryogenic Underground Storage Cavern using Hydro-Thermal Coupling Method (극저온 지하저장고 주변 ice ring 생성 모델링을 위한 열-수리 해석)

  • Jung Yong-Bok;Park Chan;Chung So-Keul;Jeong Woo-Cheol;Kim Ho-Yeong
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.241-250
    • /
    • 2006
  • Ice ring formation, one of the core techniques in LNG storage in a lined rock cavern, is investigated through hydro-thermal coupled analysis. An ice ring acts as a secondary barrier in case of leakage of cryogenic liquid and as a primary barrier for groundwater intrusion into an LNG cavern. Therefore, the thickness and location of the ice ring are crucial factors for the safe operation of an LNG storage cavern, especially for maintaining the integrity of a primary barrier composed of concrete, PU foam, and steel membrane. Through numerical analyses, the position and thickness of the ice ring are estimated, and the temperature and groundwater level are compared with measured values. The temperature md groundwater level by numerical analyses show good agreement with the field measurements when temperature-dependent properties and phase change are taken into account. The schemes used in this paper can be applied for estimation of ice ring formation in designing a full-scale LNG cavern.

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior (Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석)

  • Lee, Jae Owan;Birch, Kenneth;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.372-382
    • /
    • 2013
  • Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.