• 제목/요약/키워드: Hydro-power Plant

검색결과 321건 처리시간 0.034초

국내 원전 엔지니어링운영모델 활용성 향상을 위한 시스템 개발 (Development of Electronic Management System for improving the utilization of Engineering Model in Domestic Nuclear Power Plant)

  • 이상대;김정운;김문수
    • 한국안전학회지
    • /
    • 제36권5호
    • /
    • pp.79-85
    • /
    • 2021
  • A standard engineering model that reflects the current organization system and engineering operation process of domestic nuclear power plants was developed based on the Standard Nuclear Performance Model developed by the American Nuclear Energy Association. The level 0 screen, which is the main screen of the engineering model computer system, consisted of an object tree structure, which provided information that is phased down from a higher structure level to a lower structure level (i.e., level 3). The level 1 screen provided information related to the sub-process of the engineering operation, whereas the Level 2 screen provided information related to each engineering operation activity. In addition, the Level 2 screen provided additional functions, such as linking electronic procedures/guidelines, providing electronic performance forms, and connecting legacy computer systems (such as total equipment reliability monitoring system, configuration management systems, technical information systems, risk monitoring systems, regulatory information, and electronic drawing system). This screen level increased the convenience of user's engineering tasks by implementing them. The computerization of an engineering model that connects the entire engineering tasks of an establishment enables the easy understanding of information related to the engineering process before and after the operation, and builds a foundation for the enhancement of the work efficiency and employee capacity. In addition, KHNP developed an online training module, which operates as an e-learning process, on the overview and utilization of a standard engineering model to expand the understanding of standard engineering models by plant employees and to secure competitiveness.

Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India

  • Rai, Anant Kr.;Kumar, Arun
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.146-153
    • /
    • 2017
  • Sediment flow through hydropower components causes hydro-abrasive erosion resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance. Online instruments are required to measure/capture the variations in sediment parameters along with collecting samples manually to analyse in laboratory for verification. In this paper, various sediment parameters viz. size, concentration (TSS), shape and mineral composition relevant to hydro-abrasive erosion were measured and discussed with respect to a hydropower plant in Himalayan region, India. A multi-frequency acoustic instrument was installed at a desilting chamber to continuously monitor particle size distribution (PSD) and TSS entering the turbine during 27 May to 6 August 2015. The sediment parameters viz. TSS, size distribution, mineral composition and shape entering the turbine were also measured and analysed, using manual samples collected twice daily from hydropower plant, in laboratory with instruments based on laser diffraction, dynamic digital image processing, gravimetric method, conductivity, scanning electron microscope, X-ray diffraction and turbidity. The acoustic instrument was able to capture the variation in TSS; however, significant deviations were found between measured mean sediment sizes compared to values found in the laboratory. A good relation was found for turbidity ($R^2=0.86$) and laser diffraction ($R^2=0.93$) with TSS, which indicated that turbidimeter and laser diffraction instrument can be used for continuous monitoring of TSS at the plant. Total sediment load passed through penstock during study period was estimated to be 15,500 ton. This study shall be useful for researchers and hydropower managers in measuring/monitoring sediment for hydro-abrasive erosion study in hydropower plants.

신규원전의 설계특성 기반 정비효과성감시 프로그램 개발 (Development of Maintenance Effectiveness Monitoring Program based on Design Characteristics for New Nuclear Power Plant)

  • 염동운;현진우;송태영
    • 한국압력기기공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.25-32
    • /
    • 2012
  • Korea Hydro & Nuclear Power Co. (KHNP) has developed and implemented the maintenance effectiveness monitoring (MR) programs for the operating nuclear power plants. The MR program is developed by reflecting design characteristics of the operating nuclear power plants to monitor the plant performance for improving the safety and reliability. Recently, KHNP has built a new nuclear power plant, and developed the MR program to establish the advanced maintenance system by reflecting unique design characteristics based on the OPR1000 standard model. So, the MR program developed in this study has another characteristics in comparison with the OPR1000 standard model, and we will verify the suitability of the MR program through evaluating initial performance of the plant. The safety and reliability of the new plant will be improved by developing and implementing the MR program.

AGING ASSESSMENT OF CANDU PLANT MAJOR COMPONENTS

  • Jeong, Il-Seok;Lee, Kyoung-Soo;Kim, Tae-Ryong
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.415-423
    • /
    • 2003
  • Korea Electric Power Research Institute(KEPRI) had worked a comprehensive Plant Lifetime Management (PLiM) project for a CANDU plant in corporation with Korea Hydro and Nuclear Power(KHNP). The project had been performed to understand the aging status of major components screened from the plant and to address provisions for the continued operation over its design life. A feasibility of the continued operation was reviewed in the aspects of technology, economics, and regulatory environments. This paper introduces general approach of aging assessment, screening of critical components and an experience of aging assessment for an example of fuel channel that is the most critical component in CANDU plant.

  • PDF

원전 운전환경을 고려한 주기기 피로 건전성 상세평가 절차개발 및 적용 (Development and Application of Detailed Procedure to Evaluate Fatigue Integrity for Major Components Considering Operating Conditions in the Nuclear Power Plant)

  • 김병섭;김태순
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.20-25
    • /
    • 2006
  • In the design of class 1 components to apply ASME code section III NB, a fatigue is considered as one of the important failure mechanisms. Fatigue analysis procedure and standard fatigue design curve(S-N curve) is suggested in ASME code, which had to be performed to meet the integrity of components at the design step. As the plant life extension for operating power plants and the long-lived plant design, however, are being progressed, the fact which the existing ASME fatigue design curve can not consider fatigue effects sufficiently comes to the fore. To find the technical solution for these problems, a number of researches and discussion are continued up to now. In this study, the detailed fatigue analyses using the 3 dimensional modeling for the fatigue-weakened components were performed to develop the optimized fatigue analysis procedure and their results are compared with other reference solutions.

변압기 지역 코로나 전자파 간섭에 의한 계측제어설비 영향에 관한 연구 (A Study on the Effects of I&C Systems by EMI Generating from Corona Discharge at Transformer Area)

  • 민문기;이재기;박진엽;김희제
    • 전기학회논문지
    • /
    • 제63권2호
    • /
    • pp.266-271
    • /
    • 2014
  • The Electromagnetic Interference(EMI) generating from corona discharge of transformer area can interference the digital Instrument and Control(I&C) systems located nearby transformers. When the potential gradient of the electric field around the conductor is high enough to form a conductive region but not high enough to cause electrical breakdown to nearby objects, the EMI of corona discharge emits with the conducted and radiated noise and it interferences the signals of the I&C systems. Since digital I&C systems have an efficiency and competitive price, the analog I&C systems have been upgraded and displaced with the digital I&C systems but which have less EMI Immunity. There was no assessment to I&C systems by EMI generating corona discharge nearby transformers. When the safety-related I&C systems are installed in plants, the verification of equipment EMI should be done not in site-specific test but in test facilities. There are the need to do the site-specific EMI evaluation of corona discharge nearby transformers. This paper assesses the margin between plant emission limits and the highest composite plant emission of corona. When the non safety-related I&C systems are placed in transformer area, it suggests the appropriate radiated susceptibility level to EMI of corona discharge.

A Study on Feasibility Evaluation for Prognosis Systems based on an Empirical Model in Nuclear Power Plants

  • Lee, Soo Ill
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.26-32
    • /
    • 2012
  • This paper introduces a feasibility evaluation method for prognosis systems based on an empirical model in nuclear power plants. By exploiting the dynamical signature characterized by abnormal phenomena, the prognosis technique can be applied to detect the plant abnormal states prior to an unexpected plant trip. Early $operator^{\circ}{\emptyset}s$ awareness can extend available time for operation action; therefore, unexpected plant trip and time-consuming maintenance can be reduced. For the practical application in nuclear power plant, it is important not only to enhance the advantages of prognosis systems, but also to quantify the negative impact in prognosis, e.g., uncertainty. In order to apply these prognosis systems to real nuclear power plants, it is necessary to conduct a feasibility evaluation; the evaluation consists of 4 steps (: the development of an evaluation method, the development of selection criteria for the abnormal state, acquisition and signal processing, and an evaluation experiment). In this paper, we introduce the feasibility evaluation method and propose further study points for applying prognosis systems from KHNP's experiences in testing some prognosis technologies available in the market.

SOFT LOGIC을 이용한 전력설비 통합제어 시스템구축에 관한 연구 (The study on Intergrated SCADA system for Powerplant using Soft logic)

  • 조남빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2443-2445
    • /
    • 2000
  • In this paper, the Intergrated SCADA is used to computer systems designed to perform the following functions for power plant. - to collect data from industrial plant devices or transducers - to process and perform calculations on the collected data - to present collected and derived data on displays on MMI - to accept commands entered by human operators and act on them such as sending control commands to plant devices. This system is characterised by open architectured that is based on the internationally recognized industrial standard for industrial automation control language, the IEC 1131-3

  • PDF

Which CDM methodology is the best option? A case study of CDM business on S-Water treatment plant

  • Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • 제1권2호
    • /
    • pp.125-142
    • /
    • 2012
  • Clean development mechanism (CDM) validity study was conducted to suggest better and more adaptable CDM scenario on water treatment plant (WTP). Potential four scenarios for CDM project; improvement of intake pumping efficiency, hydro power plant construction, solar panel construction and system optimization of mechanical mixing process were evaluated on S-WTP in Korea. Net present value (NPV) of each scenario was estimated based on sensitivity analysis with the variable factors to investigate the CDM validity percentile. Hydro power plant construction was the best option for CDM business with 97.76% validity and $1,127,069 mean profit by 9,813 $tonsCO_2e$/yr reduction. CDM validity on improvement of intake pumping efficiency was 90.2% with $124,305 mean profit by huge amount of $CO_2$ mitigation (10,347 $tonsCO_2e$/yr). System optimization of mechanical mixing process reduced 15% of energy consumption (3,184 $tonsCO_2e$/yr) and its CDM validity and mean profit was 77.25% and $23,942, respectively. Solar panel construction could make the effect of 14,094 $tonsCO_2$ mitigation annually and its CDM validity and mean profit was 64.68% and $228,487, respectively.