• Title/Summary/Keyword: Hydro-mechanical analysis

Search Result 173, Processing Time 0.023 seconds

Which CDM methodology is the best option? A case study of CDM business on S-Water treatment plant

  • Kyung, Daeseung;Lee, Woojin
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.125-142
    • /
    • 2012
  • Clean development mechanism (CDM) validity study was conducted to suggest better and more adaptable CDM scenario on water treatment plant (WTP). Potential four scenarios for CDM project; improvement of intake pumping efficiency, hydro power plant construction, solar panel construction and system optimization of mechanical mixing process were evaluated on S-WTP in Korea. Net present value (NPV) of each scenario was estimated based on sensitivity analysis with the variable factors to investigate the CDM validity percentile. Hydro power plant construction was the best option for CDM business with 97.76% validity and $1,127,069 mean profit by 9,813 $tonsCO_2e$/yr reduction. CDM validity on improvement of intake pumping efficiency was 90.2% with $124,305 mean profit by huge amount of $CO_2$ mitigation (10,347 $tonsCO_2e$/yr). System optimization of mechanical mixing process reduced 15% of energy consumption (3,184 $tonsCO_2e$/yr) and its CDM validity and mean profit was 77.25% and $23,942, respectively. Solar panel construction could make the effect of 14,094 $tonsCO_2$ mitigation annually and its CDM validity and mean profit was 64.68% and $228,487, respectively.

Hydraulic Performance of Francis Turbine with Various Discharge Angles (유출각 변화에 따른 프란시스 수차 성능해석)

  • Jeon, J.H.;Byeon, S.S.;Choi, Y.C.;Park, J.S.;Kim, Y.J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.10-14
    • /
    • 2013
  • In this study, we have numerically investigated the hydraulic efficiency with various values of discharge angle($11^{\circ}$, $12^{\circ}$, $14^{\circ}$, $15^{\circ}$, $17^{\circ}$, $18^{\circ}$, $20^{\circ}$) in the Francis turbine of hydropower generation under 15MW with fixed values of head range of 151m and flow rate($10.97m^3/s$). We also conducted the numerical analysis with constant inlet angle in the Francis turbine using the commercial code, ANSYS CFX. Hydraulic characteristics for different values of the runner blade angle are investigated. The results showed that the change of discharge angles significantly influenced on the performance of the turbine hydraulic efficiency.

Technology Based on Wall-Thinning Prediction and Numerical Analysis Techniques for Wall-Thinning Analysis of Small-Bore Carbon Steel Piping (감육예측 및 수치해석 기법을 활용한 소구경 탄소강배관 감육영향 분석에 관한 연구)

  • Lee, Dae-Young;Hwang, Kyeong-Mo;Jin, Tae-Eun;Park, Won;Oh, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 2010
  • In approximately fifty utilities, including KHNP (Korea Hydro & Nuclear Power), CHECWORKS is used as a tool for predicting and managing the wall thinning of carbon steel piping; this wall thinning is caused by flow-accelerated corrosion (FAC). It is known that CHECWORKS is only applicable to predict the wall thinning of piping with large bores. When dealing with small-bore steel piping, FAC engineers measure the thickness of the susceptible area that is selected on the basis of the experience and judgment of the engineer. This paper proposes the application of CHECWORKS for the management of wall thinning of small-bore piping. Four small-bore pipelines of a domestic nuclear power plant were analyzed from the viewpoints of FAC and fluid dynamics by using CHECWORKS and FLUENT code. Depending on the engineer's skill, CHECWORKS can also be used for the management of wall thinning of small-bore piping.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Verification and validation of STREAM/RAST-K for PWR analysis

  • Choe, Jiwon;Choi, Sooyoung;Zhang, Peng;Park, Jinsu;Kim, Wonkyeong;Shin, Ho Cheol;Lee, Hwan Soo;Jung, Ji-Eun;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.356-368
    • /
    • 2019
  • This paper presents the verification and validation (V&V) of the STREAM/RAST-K 2.0 code system for a pressurized water reactor (PWR) analysis. A lattice physics code STREAM and a nodal diffusion code RAST-K 2.0 have been developed by a computational reactor physics and experiment laboratory (CORE) of Ulsan National Institute of Science and Technology (UNIST) for an accurate two-step PWR analysis. The calculation modules of each code were already verified against various benchmark problems, whereas this paper focuses on the V&V of linked code system. Three PWR type reactor cores, OPR-1000, three-loop Westinghouse reactor core, and APR-1400, are selected as V&V target plants. This code system, for verification, is compared against the conventional code systems used for the calculations in nuclear design reports (NDRs) and validated against measured plant data. Compared parameters are as follows: critical boron concentration (CBC), axial shape index (ASI), assembly-wise power distribution, burnup distribution and peaking factors. STREAM/RAST-K 2.0 shows the RMS error of critical boron concentration within 20 ppm, and the RMS error of assembly power within 1.34% for all the cycles of all reactors.

Round robin analysis of vessel failure probabilities for PTS events in Korea

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik;Kim, Maan-Won;Kim, Tae-Hyeon;Kim, Jong-Min;Kim, Min Chul;Lee, Bong Sang;Kim, Jong-Min;Kim, Kyuwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1871-1880
    • /
    • 2020
  • Round robin analyses for vessel failure probabilities due to PTS events are proposed for plant-specific analyses of all types of reactors developed in Korea. Four organizations, that are responsible for regulation, operation, research and design of the nuclear power plant in Korea, participated in the round robin analysis. The vessel failure probabilities from the probabilistic fracture mechanics analyses are calculated to assure the structural integrity of the reactor pressure vessel during transients that are expected to initiate PTS events. The failure probabilities due to various parameters are compared with each other. All results are obtained based on several assumptions about material properties, flaw distribution data, and transient data such as pressure, temperature, and heat transfer coefficient. The realistic input data can be used to obtain more realistic failure probabilities. The various results presented in this study will be helpful not only for benchmark calculations, result comparisons, and verification of PFM codes developed but also as a contribution to knowledge management for the future generation.

Thermal-hydro-mechanical Modelling for an Äspö prototype repository: analysis of thermal behavior (Äspö 원형 처분장에 대한 열-수리-역학적 모델링 연구: 열적 거동 해석)

  • Lee, Jae Owan;Birch, Kenneth;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.372-382
    • /
    • 2013
  • Thermal-hydro-mechanical (THM) modeling is a critical R&D issue in the performance and safety assessment of a high-level waste repository. With an $\ddot{A}$sp$\ddot{o}$ prototype repository, its thermal behavior was analyzed and then compared with in-situ experimental data for its validation. A model simulation was used to calculate the temperature distributions in the deposition holes, deposition tunnel, and surrounding host rock. A comparison of the simulation results with the experimental data was made for deposition hole DH-6, which showed that there was a temperature difference of $2{\sim}5^{\circ}C$ depending on the location of the measuring points, but there was a similar trend in the evolution curves of temperature as a function of time. It was expected that the coupled modeling of the thermal behavior with the hydro-mechanical behavior in the buffer and backfill of the $\ddot{A}$sp$\ddot{o}$ prototype repository would give a better agreement between the experimental and model calculation results.

Internal Flow Characteristics in the Draft Tube of a Francis Turbine

  • Wei, Qingsheng;Zhu, Baoshan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.618-626
    • /
    • 2012
  • Suppression of abnormal flow phenomena in the Francis hydro turbine is very important to improve the turbine performance. Especially, as cavitation and cavitation surge makes serious problems when the turbine is operated in the range of partial flow rate, optimum method of suppressing the abnormal flow characteristics is required necessarily. Moreover, as swirl flow in the draft tube of the Francis turbine decreases pressure at the inlet of the draft tube, suppression of the swirl flow can be an useful method of suppressing the occurrence of cavitation. In order to clarifying the possibility of suppressing the swirl flow by J-Groove in the draft tube, a series of CFD analysis has been conducted in the range of partial load, designed condition and excessive flow rate of a Francis turbine. A kind of J-Groove is designed and applied to the draft tube of the Francis hydro turbine model. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Groove. In addition, a group of data about the velocity in the draft is presented to show the influence of J-Groove.

Tension variations of hydro-pneumatic riser tensioner and implications for dry-tree interface in semisubmersible

  • Kang, Hooi-Siang;Kim, Moo-Hyun;Aramanadka, Shankar S. Bhat
    • Ocean Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.21-38
    • /
    • 2017
  • In real sea environments, excessive dynamic axial tension variations can be exerted on the top-tensioned risers (TTRs) and lead to structural integrity issues. The traditional riser-tension-variation analysis, however, by using parametric formulation is only conditionally valid under certain strict limits and potentially underestimates the total magnitudes of tension variations. This phenomenon is especially important for the long stroke tensioner in dry-tree semisubmersible with larger global heave motion and longer stroke. In this paper, the hydro-pneumatic tensioner (HPT) is modeled in detailed component-level which includes a set of hydraulic and pneumatic components. The viscous fluid frictional effect in the HPT is considered. The main objectives are (i) to develop a detailed tension variation model of the HPT; (ii) to identify the deviations between the conventional parametric formulation and component-level formulation; (iii) to numerically analyze the tension variation of long stroke tensioner in a dry-tree semisubmersible (DTS). The results demonstrate the necessity of component-level formulation for long stroke tensioner in the development of DTS.