• Title/Summary/Keyword: Hydro power generator

Search Result 123, Processing Time 0.026 seconds

The Optimum Control Study for Improving Efficiency of the small hydropower generation in water pipe (수도관로 소수력발전 운영효율 향상을 위한 최적제어 방안)

  • Hong, Jeong-Jo;Rim, Dong-Heui;Kim, Soo-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.126-129
    • /
    • 2008
  • Using a surplus head in presented water supply pipes, we have studied to improve the operating efficiency of small hydro generator, which was chosen for a test model with Sung-Nam and Bo-Ryong small hydro power plant. With regard to power control and countermeasure of water hammer impact, Finally we have represented the optimal control method through the synthetical analysis of existing system symptoms, operation efficiency, the effect of water hammer impact and system configuration.

  • PDF

An Analysis on the Usage of Pumped Hydro Storage as a Non-Spinning Reserve Power (양수발전기의 대기예비력 활용방안 분석)

  • Jeong, Seung-Hoon;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Total capacity of pumped hydro storage(PHS) in Korean power system reaches 4,700MW, though the share of it is about 4.56% of total capacity The Unit Commitment program, E-terracommit which is used for the operational purpose by KPX, includes the PHS model. But the model has a defect that it does not include the information of water level of upper reservoir. Therefore two types of improved the PHS models are represented in this paper. The first model is a optimized model by connecting the upper reservoir water level to the non-spinning reserve. The other model is to have priority allocate both the PHS and combined cycle generator for non-spinning reserve. The proposed two models and the E-terracommit model is compared and resulting to have improvement in estimating non-spinning reserve when using the proposed models.

Numerical Investigation of Pressure Fluctuation Reducing in Draft Tube of Francis Turbines

  • Li, WF;Feng, JJ;Wu, H;Lu, JL;Liao, WL;Luo, XQ
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2015
  • For a prototype turbine operating under part load conditions, the turbine output is fluctuating strongly, leading to the power station incapable of connecting to the grid. The field test of the prototype turbine shows that the main reason is the resonance between the draft tube vortex frequency and the generator natural vibration frequency. In order to reduce the fluctuation of power output, different measures including the air admission, water admission and adding flow deflectors in the draft tube are put forward. CFD method is adopted to simulate the three-dimensional unsteady flow in the Francis turbine, to calculate pressure fluctuations in draft tube under three schemes and to compare with the field test result of the prototype turbine. Calculation results show that all the three measures can reduce the pressure pulsation amplitude in the draft tube. The method of water supply and adding flow deflector both can effectively change the frequency and avoid resonance, thus solving the output fluctuation problem. However, the method of air admission could not change the pressure fluctuation frequency.

Commercial Grade Item Dedication of Digital Devices for Safety-related System in Nuclear Power Plant (원자력발전소 안전등급 계통 적용을 위한 디지털 상용기기 품질검증)

  • Hong, Young Hee;Bae, Byung Hwan;Park, Jaehyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1637-1639
    • /
    • 2014
  • In the past, the analog protection relays have been widely used for the safety-related systems in the nuclear power plants due to their stability and reliability. Meanwhile, as the high performance digital system has been developed, the digital systems have been adopted in the non-safety systems. However, since the digital systems currently used in the non-safety systems were not developed according to Q-class standard, Commercial Grade Item Dedication (CGID) procedure should be performed in order to apply them to the safety-related system. The purpose of this paper is to describe the CGID procedure including the analysis of the hardware architecture as well as the software embedded in protective relay to apply to the emergency diesel generator in the nuclear power plant. The entire CGID procedure was performed strictly according to the international standard and regulations.

Performance Evaluation and Economic Analysis on the Integrated Small Hydro Power Generation Device Using a Discharged Water of Sewage Treatment Plant (하수처리장의 방류수를 이용한 일체형 발전장치의 성능평가 및 경제성 분석)

  • Park, Yoo-Sin;Kim, Ki-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.486-491
    • /
    • 2017
  • The water discharged from sewage treatment plants has been considered to be useless, due to itslack of economic utility for small hydro power generation. Considering that most sewage treatment facilities have a water head of less than 2 meters and their flow rate is constant, it is necessary to develop a small hydro power generation device capable of maintaining stable power generation and efficiency. This paper presents the development of anintegrated small hydro power generation system and presents its performance evaluation and results. Then, the economics and use of the system for practical applications are suggested. As a result, it is foundthat the generator efficiency is 92%, the electric energy produced is 10kWh and the economic efficiency, as described by the B/C ratio,is 1.0 or more. Particularly, if the operating level of the generation device is maintained at 80% or more of the rated power, it is possible to secure its economic efficiency and, after 23 years, the investment cost will bereturned. The integrated hydro power generation device is expected to have a positive effect not only in terms of the water discharged from the sewage treatment plant, but also in terms of facilities capable of securing similar flow characteristics.

The Modernization of Automatic Control facilities of Hydro Power Plant (수력발전소 자동제어설비의 현대화)

  • Kwon, O-Geuk;Kwon, Young-June;Song, Young-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.69-70
    • /
    • 2008
  • Automatic control systems(AVR, Governor, Synchronizer) installed $1970{\sim}1980$ in K-water were considered to be rehabilitated around 2000. Moreover, Korea Power Exchange market system was changed from PPA (Power Purchase Agreement) to a bidding system. Therefore, depending on the power quality, the power provider could achieve additional profits. It is the excitation system and governor that have the functions of enhancing power necessities. During the 20 to 30 years of generator operation, there were many major and minor problems. Examples are SCR burnout (Andong: Excitation system), hunting (Imha: governor), field circuit breaker failure (Chungju 1st: excitation system), the rise of leakage current (Chungju 2nd: excitation system), power supply burnout (Chungju 2nd: governor). These are the typical examples of malfunction which hindered the generator operation and, consequently, diminished the profit of power business. In order to satisfy the needs of the power market and prevent malfunctions mentioned above, the rehabilitation of AVRs and governors were executed. A new system was made to have the flexibility of ancillary service (GF, AGC, etc.), PSS function. With user friendly HMI software, it is more convenient for the operator to fulfill suitable maintenance. It was possible to connect SCADA system by opening protocol of AVR, governor for the efficiency of operation and maintenance.

  • PDF

A Study on Digital Protection Algorithm of IED for Hydroelectric Generating Unit (수력발전소 IED의 디지털 보호 알고리즘에 관한 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.149-156
    • /
    • 2014
  • Generator of hydroelectric generating unit is to be protected by the digital protection IED. Now, any IED of large capacity for hydro power plant was not developed by domestic technology. This is because it is required for the generator of the high reliability technology and considered as due to the sale of the market of IED device is small. However, the protection IED must be develop by domestic technology to meet the advanced needs of the construction and replacement of electrical equipment in accordance with the new power plant development. In this paper, a digital algorithms for protection IED of large size of hydroelectric generating unit were designed. The algorithms consist of the stator protection, anti-motoring, overexcitation and loss of excitation. The performance of the algorithms were evaluated by using the simulation data collected from the PSCAD/EMTDC software. From test results, it can be seen that the developed algorithms were not maloperation.

Overview and Trend of Small Hydropower Development in Korea (국내 소수력발전 기술개발 현황과 전망)

  • Lee, G.B.;Lee, E.W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.735-741
    • /
    • 2005
  • We have studied the prearranged plan and the economy of a candidate site for the development of small hydro power. And also we have confirmed its economy by suggesting the technology of the unmanned operation and the selection of the water turbine generator which has a great efficiency, working rate and suitability to the topographical characteristics of various development sites, for example, irrigation reservoirs, water works pipes, sewage systems and cooling water of a steam power station. We proposed some opinions such as the better improvement of small hydropower industry the people' view, cooperation among industry/university/ research institutes, remote control/maintenance and goverment's legislature and supporting system etc.

  • PDF

Plan to Develop the Radioactive Waste Certification Program (방사성폐기물인증프로그램 개발 방안)

  • Chung Hee-Jun;Lee Jae-Min;Whang Joo-Ho;Kim Heon;Jeong Yi-Yeong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.205-210
    • /
    • 2005
  • The proposed regulation for low and intermediate level radioactive waste disposal facility, scheduled to be revised, recommends that the waste generator should verify the radioactive waste conforms to the disposal requirements before disposing of it. According to the regulation, the radionuclide concentration of the radioactive waste, and its physical and chemical characteristics and safety must be confirmed prior to the disposal of low and intermediate level radioactive wastes, and the waste generator is required to deliver this information to the disposal facility operator. In addition, the disposal facility operator must assess the safety of the disposal site to establish the SWAC (Site Specific Waste Acceptance Criteria) in consideration of the characteristics of the site, whereas the waste generator must comply with the criteria in managing, disposing of and delivering low and intermediate level radioactive wastes. To abide by the afore-mentioned regulation and criteria, the waste generator must verify that the radioactive wastes to be disposed of are suitable for disposal before they are transported to the disposal facility, and to this end a radioactive waste certification program must be developed. This study conducted an in-depth analysis of the radioactive waste certification programs enforced in countries advanced in atomic energy to develop a draft of a certification program applicable to local power plants, and the program is currently applied as pilot to Uljin Power Plants No. 1 & 2 to prove its applicability. This study is going to analyze the results of the pilot application with a view to developing a radioactive waste certification program suitable to local conditions.

  • PDF

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.