• 제목/요약/키워드: Hydrides

검색결과 126건 처리시간 0.021초

Spin-Orbit Density Functional Theory Calculations for TlAt with Relativistic Effective Core Potentials

  • Choi, Yoon-Jeong;Bae, Cheol-Beom;Lee, Yoon-Sup;Lee, Sang-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.728-730
    • /
    • 2003
  • Bond lengths, harmonic vibrational frequencies and dissociation energies of TlAt are calculated at ab initio molecular orbital and density functional theory using effective spin-orbit operator and relativistic effective core potentials. Spin-orbit effects estimated from density functional theory are in good agreement with those from ab initio calculations, implying that density functional theory with effective core potentials can be an efficient and reliable methods for spin-orbit interactions. The estimated $R_e$, $ω_e$ and $D_e$ values are 2.937 ${\AA}$, 120 $cm^{-1}$, 1.96 eV for TlAt. Spin-orbit effects generally cause the bond contraction in Group 13 elements and the bond elongation in the Group 17 elements, and spin-orbit effects on Re of TlAt are almost cancelled out. The spinorbit effects on $D_e$ of TlAt are roughly the sum of spin-orbit effects on $D_e$ of the corresponding element hydrides. Electron correlations and spin-orbit effects are almost additive in the TlAt molecule.

Ti0.3Zr0.2V0.5 합금의 수소흡수 특성에 미치는 수소화물의 영향 (The Effect of Hydride Phase on the Hydrogen Sorption Properties of the Non-Evaporable Ti0.3Zr0.2V0.5 Getter Alloy)

  • 이동진;박제신;서창열;이재천;김원백
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.306-312
    • /
    • 2005
  • The hydrogen sorption properties of $Ti_{0.3}Zr_{0.2}V_{0.5}$ NEC(non-evaporable getter) alloy and its hydrides were evaluated at room temperature. The alloy and hydride powders were prepared by the Hydride-DeHydride(HDH) method. The hydrogen sorption speed of $Ti_{0.3}Zr_{0.2}V_{0.5}$ alloy was measured to increase with the amounts of hydride phase in the getter. The hydrogen sorption speeds of $Ti_{0.3}Zr_{0.2}V_{0.5},\;(Ti_{0.3}Zr_{0.2}V_{0.5})H_{1.52},\;and\;(Ti_{0.3}Zr_{0.2}V_{0.5})H_{1.94}$ were 2.22, 3.14 and 5.08 liter/sec, respectively. The unexpected enhancement of hydrogen sorption speed with the presence of the hydride phase is considered to be due to the pre-saturation of hydrogen trap sites which can retard the diffusion of hydrogen in the alloy.

수소저장용 금속수소화물$(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$의 전열촉진 (Heat transfer enhancement of metal hydride $(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$ for hydrogen storage)

  • 배상철
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 2006
  • The effective thermal conductivities of $Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2}$ [TL-492] with hydrogen and helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in low pressure range [below 0.5 MPa]. And that influence decreases rapidly with increase of gas pressure. The reason is at low pressure, the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism in this research. And, carbon fibers have been used to try to enhance the poor thermal conductivity of TL-492. Three types of carbon fibers and three mass fractions have been examined and compared. Naturally, the highest effective thermal conductivity has been reached with carbon fiber which has highest thermal conductivity, and highest mass fraction. This method has acquired 4.33 times higher thermal conductivity than pure metal hydrides with quite low quantity of additives, only 0.99 wt% of carbon fiber. This is a good result comparing to other method which can reach higher effective thermal conductivity but needs much higher mass fraction of additives too.

  • PDF

가스소스 MBE에서 원료공급량이 결정성장 기구에 미치는 영향 (The Effect of V/III Ratio on Growth Mechanism of Gas Source MBE)

  • 최성국;유진엽;정수훈;장원범;장지호
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.446-450
    • /
    • 2013
  • Growth mechanism of GS-MBE(Gas source-Molecular Beam Epitaxy) has been investigated. We observed that the growth rate of GaN films is changing from 520 nm/h to 440 nm/h by the variation of V/III ratio under nitrogen-rich growth condition. It was explained that the amount of hydrogen on the growth front varies by the ammonia flow, and gallium hydrides are generated on the surface by a reaction of hydrogen and gallium, resultantly the amount of gallium supplying is changing along with the $NH_3$ flow. Reflection high energy electron diffraction (RHEED) observation was used to confirm the N-rich condition. The crystal quality of GaN was estimated by photoluminescence (PL) and X-ray diffraction (XRD).

기계적 합금화된 TiH2의 수소방출에 따른 미세조직 특성 (MicrostructuraL Characteristics During Hydrogen Desorption of Mechanical Milled TiH2)

  • 정승;정현성;안재평;박종구
    • 한국분말재료학회지
    • /
    • 제13권3호
    • /
    • pp.199-204
    • /
    • 2006
  • We manufactured the metal hydrides of $(Ti_{0.88}Mg_{0.12})H_2$ using a very easy and cheap way that Ti-12%Mg blending powder was mechanically milled with liquid milling media such as isopropyl alcohol ($C_3H_8O$, containing oxygen) and hexane ($C_6H_{14}$, no oxygen) as hydrogen source. The $(Ti_{0.88}Mg_{0.12})H_2$ synthesized in isopropyl alcohol contained the high oxygen of 11.2%, while one in hexane had the low oxygen content of 0.7%. Such a difference of oxygen content affected the dehydriding behavior, phase transformation, and microstructural evolution at high temperature, which was investigated through X-ray diffraction and DSC measurements, and electron microscope observations.

고농도 과산화수소와 수소화물의 지속적인 반응에 대한 연구 (Feasibility of Energy Generation from Chemical Reaction between Hydrogen Peroxide/Hydride)

  • 서성현
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.271-277
    • /
    • 2015
  • The present paper discusses about noble idea on various reactions including hydrides, hydrogen peroxide and nano-sized metal powders, which do not emit toxic materials as well as carbon dioxide. Here in this paper, the very first-ever concept that heat energy can be generated from the direct reaction between sodium borohydride and hydrogen peroxide is presented. Sodium hydride as fuel can supply hydrogen reacting with oxygen provided by the decomposition of hydrogen peroxide solution. Solid sodium borohydride can be resolved in water and treated as liquid solution for the easy handling and the practical usage although its solid powder can be directly mixed with hydrogen peroxide for the higher reactivity. The thermodynamic analysis was conducted to estimate adiabatic reaction temperatures from these materials. The preliminary experiment on the reactions conducted using sodium borohydride powder and hydrogen peroxide water solution revealed that the self-propagating reaction can occur and that its reactivity increases with an increase of hydrogen peroxide concentration.

MH 수소저장 장치의 방출시 열거동 모사 수치 모델 개발 (Development of a Thermal Model for Discharge Behavior of MH Hydrogen Storage Vessels)

  • 오상근;조성욱;이경우
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.178-183
    • /
    • 2011
  • Metal hydride alloys are a promising type of material in hydrogen storage applications, allowing for low-pressure, high-density storage. However, while many studies are being performed on enhancing the hydrogen storage properties of such alloys, there has been little research on large-scale storage vessels which make use of the alloys. In particular, large-scale, high-density storage devices must make allowances for the inevitable generation or absorption of heat during use, which may negatively impact functioning properties of the alloys. In this study, we develop a numerical model of the discharge properties of a high-density MH hydrogen storage device. Discharge behavior for a pilot system is observed in terms of temperature and hydrogen flow rates. These results are then used to build a numerical model and verify its calculated predictions. The proposed model may be applied to scaled-up applications of the device, as well as for analyses to enhance future device designs.

감압화학증착법으로 성장된 실리콘-게르마늄 반도체 에피층에서 붕소의 이차원 도핑 특성 (Two Dimensional Boron Doping Properties in SiGe Semiconductor Epitaxial Layers Grown by Reduced Pressure Chemical Vapor Deposition)

  • 심규환
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1301-1307
    • /
    • 2004
  • Reduced pressure chemical vapor deposition(RPCYD) technology has been investigated for the growth of SiGe epitaxial films with two dimensional in-situ doped boron impurities. The two dimensional $\delta$-doped impurities can supply high mobility carriers into the channel of SiGe heterostructure MOSFETs(HMOS). Process parameters including substrate temperature, flow rate of dopant gas, and structure of epitaxial layers presented significant influence on the shape of two dimensional dopant distribution. Weak bonds of germanium hydrides could promote high incorporation efficiency of boron atoms on film surface. Meanwhile the negligible diffusion coefficient in SiGe prohibits the dispersion of boron atoms: that is, very sharp, well defined two-dimensional doping could be obtained within a few atomic layers. Peak concentration and full-width-at-half-maximum of boron profiles in SiGe could be achieved in the range of 10$^{18}$ -10$^{20}$ cm$^{-3}$ and below 5 nm, respectively. These experimental results suggest that the present method is particularly suitable for HMOS devices requiring a high-precision channel for superior performance in terms of operation speed and noise levels to the present conventional CMOS technology.

수소화물에 의한 Zr-2.5Nb 압력관의 상온 수소취화 거동 (Hydrogen Embrittlement of Zr-2.5Nb Pressure Tube at Room Temperature by Precipitated Hydride)

  • 오동준;부명환;김영석
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.455-463
    • /
    • 2003
  • The aim of this study is to investigate the hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube at room temperature. The transverse tensile and fracture toughness tests were performed at various hydrogen concentrations using transverse tensile specimens and CCT (curved compact tension) specimens. These specimens were directly machined from the pressure tube retaining original curvatures. Based on the results of these tests. the hydrogen embrittlement phenomenon was clearly observed and fracture toughness parameters of Zr-2.5Nb pressure tube materials such as, $K_{J(0.2)}$.$J_{ML}$.dJ/da, were dramatically decreased with the increasement of the hydrogen concentration. From microscopic observation by SEM and TEM, it was also revealed that various shapes dimples, fissures and quasi-cleavage were found at the hydrogen-absorbed materials with hydrides while traditional shape dimples were generally located at the as-received materials Through the comparison of the hydride and fissure lengths with the hydrogen concentration the new evaluation method of hydrogen embrittlement was suggested.

다공성 금속 촉매를 이용한 메틸사이클로헥산의 탈수소 반응 (Dehydrogenation of methylcyclohexane over porous metals)

  • 김종팔
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.152-158
    • /
    • 2004
  • Hydrogen has been considered as an important and essential future energy source. But the storage of the hydrogen is a difficult problem and many studies were focused on this matter. However, the MTH-system (methylcyclohexane, toluene, hydrogen) was proposed for storage of hydrogen by Taube et al. and that is the reaction of hydrogen with toluene to give methylcyclohexane. One toluene molecule can store six hydrogen atoms to form methylcyclohexane. In this form the hydrogen can be easily stored in liquid organic hydrides and transported at ambient pressure in tanks. Hence, this study is focused on the catalytic dehydrogenation of methylcyclohexane. Since supported platinum and nickel were employed as catalysts in literature, in this study, porous Pt and Ni were prepared and tested for the dehydrogenation reaction. When the porous Pt catalyst was applied to the dehydrogenation it showed higher activity in the reaction and higher selectivity to toluene. Specially at higher pressure, it showed almost 100 % conversion and 100 % selectivity and hence porous platinum could be considered as best for the given reaction.