• Title/Summary/Keyword: Hydride generation ICP-AES

Search Result 12, Processing Time 0.021 seconds

Improvement of analytical methods for arsenic in soil using ICP-AES (ICP-AES를 이용한 토양 시료 중 비소 분석 방법 개선)

  • Lee, Hong-gil;Kim, Ji In;Kim, Rog-young;Ko, Hyungwook;Kim, Tae Seung;Yoon, Jeong Ki
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.409-416
    • /
    • 2015
  • ICP-AES has been used in many laboratories due to the advantages of wide calibration range and multi-element analysis, but it may give erroneous results and suffer from spectral interference due to the large number of emission lines associated with each element. In this study, certified reference materials (CRMs) and field samples were analyzed by ICP-AES and HG-AAS according to the official Korean testing method for soil pollution to investigate analytical problems. The applicability of HG-ICP-AES was also tested as an alternative method. HG-AAS showed good accuracies (90.8~106.3%) in all CRMs, while ICP-AES deviated from the desired range in CRMs with low arsenic and high Fe/Al. The accuracy in CRM030 was estimated as below 39% at the wavelength of 193.696 nm by ICP-AES. Significant partial overlaps and sloping background interferences were observed near to 193.696 nm with the presence of 50 mg/L Fe and Al. Most CRMs were quantified with few or no interferences of Fe and Al at 188.980 nm. ICP-AES properly assessed low and high level arsenic for field samples, at 188.980 nm and 193.696 nm, respectively. The importance of the choice of measurement wavelengths corresponding to relative arsenic level should be noted. Because interferences were affected by the sample matrix, operation conditions and instrument figures, the analysts were required to consider spectral interferences and compare the analytical performance of the recommended wavelengths. HG-ICP-AES was evaluated as a suitable alternative method for ICP-AES due to improvement of the detection limit, wide calibration ranges, and reduced spectral interferences by HG.

Analytic study on arsenic content in plastic materials (플라스틱 소재의 비소 함유량 분석에 관한 연구)

  • Lee, Jae-In;Choi, Zel-Ho;Choi, Ki-In;Ko, Byung-Rae;Choi, In-Suk;Cho, Hun-Sik
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.402-409
    • /
    • 2012
  • Quantitative analytical condition for arsenic in plastic materials by the flow injection-hydride generation-inductively coupled plasma-atomic emission spectrometry was studied. The plastic samples were dissolved by wet-acid digestion method and microwave-acid digestion method. The reproducibility and accuracy in this method was verified using of certified reference materials(CRMs) CRM-EC680k and CRM-EC681k. The analyical results agrees with certified value within the range of uncertainty. The results of CRM-EC680k wer 4.1~4.3 mg/kg (certified value $4.1{\pm}0.5$ mg/kg), and the results of CRM-EC681k were 28.9~30.6 mg/kg (certified value $29.1{\pm}1.8$ mg/kg).