• Title/Summary/Keyword: Hydraulically fracturing

Search Result 5, Processing Time 0.015 seconds

New techniques for estimating the shut-in pressure in hydro-fracturing pressure-time curves

  • Choi Sung O.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.272-280
    • /
    • 2003
  • A definite shut-in pressure in hydraulic fracturing techniques is needed for obtaining the correct information on the in-situ stress regimes in rock masses. The relation between the behaviour of hydraulically induced fractures and the condition of remote stress is considered to be major reasons of an ambiguous shut-in pressure in hydraulic fracturing pressure-time history curves. This paper describes the results of a series of numerical analyses carried out using UDEC(Universal Distinct Element Code, Itasca), which is based on the discrete element method, to compare several methods for determining the shut-in pressure during hydraulic fracturing. The fully coupling of hydraulic and mechanical analysis was applied, and the effects of four different discontinuity geometries in numerical modelling have been investigated for this purpose. The effects of different remote stress regimes and different physical properties on hydraulic fracture propagation have been also analyzed. Several methods for obtaining shut-in pressure from the ambiguous shut-in curves have been applied to all the numerical models. The graphical intersection methods, such as (P vs. t) method, (P vs. log(t)) method, (log(P) vs. log(t)) method, give smaller values of the shut-in pressure than the statistical method, (dP/dt vs. P). Care should be taken in selecting a method for shut-in pressure, because there can be existed a stress anomaly around the wellbore and fracturing from the wellbore by a constant flow rate may have a more complicate mechanism.

  • PDF

A Study on Feasibility of Hydraulic Fracturing with Evaluation of Yield Variance by Rock Types (암종별 산출량 변화 평가를 통한 수압파쇄기법의 타당성 연구)

  • Kim Jin-Hoon;Kim Hyoung-Soo;Suk Hejun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.10-19
    • /
    • 2005
  • Hydraulic fracturing is guaranteed to create or enlarge fracture, so the hydraulically created fracture acts as a conduit in the rock, allowing the groundwater to flow more freely through the fracture system. In a recent study, it showed that 12 wells where hydraulic fracturing was performed increased well production. However, it was estimated not to present representation by rock type due to not enough wells. Therefore, this study was performed to clarify the application of hydraulic fracturing at 19 water wells. Rocks were divided into igneous rocks (9 sites), metamorphic rocks (4 sites), and sedimentary rocks (6 sites) to evaluate representative features. As a result, the average of well yield increases $93.4\%$ in the igneous rocks, $103\%$ in the metamorphic rocks, and $42.2\%$ in the sedimentary rocks. Accordingly, hydraulic fracturing presented in this study provides an effective method for increasing well production

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Production Data Analysis to Predict Production Performance of Horizontal Well in a Hydraulically Fractured CBM Reservoir (수압파쇄된 CBM 저류층에서 수평정의 생산 거동예측을 위한 생산자료 분석)

  • Kim, Young-Min;Park, Jin-Young;Han, Jeong-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • Production data from hydraulically fractured well in coalbed methane (CBM) reservoirs was analyzed using decl ine curve analysis (DCA), flow regime analysis, and flowing material balance to forecast the production performance and to determine estimated ultimate recovery (EUR) and timing for applying the DCA. To generate synthetic production data, reservoir models were built based on the CBM propertie of the Appalachian Basin, USA. Production data analysis shows that the transient flow (TF) occurs for 6~16 years and then the boundary dominated flow (BDF) was reached. In the TF period, it is impossible to forecast the production performance due to the significant errors between predicted data and synthetic data. The prediction can be conducted using the production data of more than a year after reached BDF with EUR error of approximately 5%.

Investigation of Fracture Propagation in Cement by Hydraulic Fracturing Under the Tri-axial Stress Condition (시멘트 시료에 대한 삼축압축 환경에서의 수압파쇄시험 연구)

  • Riu, Hee-Sung;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.233-244
    • /
    • 2017
  • We conducted hydraulic fracturing experiments on cement samples to investigate the dependency of fracture propagation on the viscosity of injection fluid and the in situ stress state. Ten cubic samples (20 cm side length) were produced using cement that was cured in water for more than one month. Samples were placed in a tri-axial compression apparatus with three independent principal stresses. An injection hole was drilled and the sample was hydraulically fractured under a constant injection rate. We measured injection pressures and acoustic emissions (AE) during the experiments, and investigated the fracture patterns produced by hydraulic fracturing. Breakdown pressures increased exponentially with increasing viscosity of the injection fluid. Fracture patterns were dependent on differential stress (i.e., the difference between the major and minor principal stresses). At low differential stress, multiple fractures oriented sub-parallel to the major principal stress axis propagated from the injection hole, and in some samples the fracture orientation changed during propagation. However, at high differential stress, a single fracture propagated parallel to the major principal stress axis. AE results show similar patterns. At low differential stress, AE source locations were more widespread than at high differential stress, consistent with the fracture pattern results. Our study suggests that hydraulic fracturing during shale gas extraction should be performed parallel to the orientation of minimum differential stress.