• Title/Summary/Keyword: Hydraulic scale model

Search Result 222, Processing Time 0.031 seconds

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Development of The New Analysis Methodology for Comprehensive Vibration Assessment Program for Reactor Internals (원자로 내부구조물 종합진동평가 고유 해석방법론 개발)

  • Do-young Ko;Kyu-hyung Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • This paper describes a newly-developed analysis methodology in comprehensive vibration assessment program (CVAP) of reactor internals to develop a valid-prototype for the design of nuclear power plants. The new analysis methodology developed in this study will be confirmed through a scale model testing (SMT). Based on the measurements obtained from dynamic pressure transducers in the SMT, a new non-dimensional equation is developed to apply the forcing functions at reactor internals for the prototype. In addition to the new non-dimensional equation, a computational fluid dynamics(CFD) is used to develop the application of the hydraulic loads at reactor internals for the prototype.

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF

Hydraulic Model Tests for a Pontoon-Type Floating Structure with a Horizontal Damping Plate (수평 감쇠판이 부착된 폰툰형 부유식 구조물의 수리모형실험)

  • Jeongsoo Kim;Young Taek Kim;Youn Ju Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.149-157
    • /
    • 2024
  • In this study, hydraulic model tests were conducted to investigate the effect of a horizontal damping plate on the motion of the pontoon-type floating structure. The floating structures with and without the horizontal damping plates were fabricated with the scale of 1/20 and their motion responses to the regular and irregular wave conditions were investigated. From the comparison for the responses of each model with 16 wave conditions, it could be known that the damping plate made the response of the the pontoon to be smaller by about 5 to 10 % compared with the normal rectangular pontoon.

Application of LSIV to Hydraulic Model Experiment on River Confluence (LSIV를 이용한 하천 합류부 수리 모형 실험)

  • Koh, Seok-Hyun;Yu, Kwon-Kyu;Yoon, Byung-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.63-68
    • /
    • 2005
  • LSIV (Large Scale Image Velocimetry), a technique of image analysis on velocity measurement, was applied to a hydraulic model experiment of river confluence. The surface velocities measured by using LSIV showed similar results with the mean velocities by using a traditional velocimeter, While a general velocimeter can measure only local point velocity, LSIV can measure whole velocity field with one shot. When it is applied to river confluence or around a bridge pier where local flow is dominant, LSIV may be a powerful tool to measure velocity field.

Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions - Simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module

  • Pescador, E. Diaz;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3182-3195
    • /
    • 2021
  • The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic system codes aims to extend the application of these codes towards multi-scale simulations. The main goal is the simulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. This novel approach becomes especially relevant during the simulation of accidents with strongly asymmetric flow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenon on the eventual variation of the coolant temperature and/or boron concentration at the core inlet and on the extent of a local re-criticality based on the reactivity feedback effects. This approach presents several advantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this point is still limited and needs to be further extended. This paper aims at contributing to the validation of the multi-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted at the test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolution from both experiments, despite an observed overprediction of coolant mixing at the vessel during both experiments.

A study on the application of modified hydraulic conductivity to consider turbid water for open-cut riverbed infiltration process: numerical modeling approach (개착식 하상여과에서 탁수를 고려한 수정 투수계수 적용 연구: 수치모델링을 통한 접근)

  • Yang, Jeong-Seok;Kim, Il-Hwan;Jeong, Jae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.741-748
    • /
    • 2016
  • Laboratory scale model was constructed for open-cut riverbed infiltration experiment and four kinds of media were selected, medium sand, sand, volcanic rock, and gravel, for the experiment. Hydraulic conductivity for each medium and flow rate from the collecting pipe with functional screen were estimated from the experiment. Modified hydraulic conductivity scenarios considering turbid water (30~50 NTU) were applied in Visual MODFLOW modeling to analyze the effects of turbid water on the flow rate. Twenty-two scenarios were generated considering prticles in turbid water and applied to each medium cases in MODFLOW modeling. The minimum error was occurred when the gravel medium had 20% less hydraulic conductivities for the third layer-depth from the top and clay particles in turbid water might play a role in adsorption process to the surface of volcanic rock (2~5 mm). For medium sand case the error was also quite small when the mediumhas 5% less hydraulic conductivities for the second layer-depth from the top.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

SPH Modeling of Surge Overflow over RCC Strengthened Levee

  • Li, Lin;Amini, Farshad;Rao, Xin;Tang, Hongwu
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.200-208
    • /
    • 2012
  • Surge overflow may cause damage on earthen levees. Levee strengthened on the levee crest and landward-side slope can provide protection against the erosion damage induced by surge overflow. In this paper, surge overflow of a roller compacted concrete RCC strengthened levee was studied in a purely Lagrangian and meshless approach, the smoothed particle hydrodynamics (SPH) method. After verifying the developed model with analytical solution and comparing the results with full-scale experimental data, the roughness and erosion parameters were calibrated. The water thickness, flow velocity, and erosion depth at crest, landward-side slope and toe were calculated. The characteristics of flow hydraulics and erosion on the RCC strengthened levee are given. The results indicate that the RCC strengthened levee can resist erosion damage for a long period.

Hydrodynamics and parametric study of an activated sludge process using residence time distribution technique

  • Sarkar, Metali;Sangal, Vikas K.;Bhunia, Haripada
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.400-408
    • /
    • 2020
  • Hydrodynamic study of Activated Sludge Process (ASP) is important to optimize the reactor performance and detect anomalies in the system. Residence time distribution (RTD) study has been performed using LiCl as tracer on a pilot scale aeration tank (AT) and ASP, treating the pulp and paper mill effluent. The hydraulic performance and treatment efficiency of the AT and ASP at different operating parameters like residence time, recycle rate was investigated. Flow anomalies were identified and based on the experimental data empirical models was suggested to interpret the hydrodynamics of the reactors using compartment modelling technique. The analysis of the RTD curves and the compartment models indicated increase in back-mixing ratio as the mean hydraulic retention time (MHRT) of the tank was increased. Bypassing stream was observed at lower MHRT. The fraction of dead zone in the tank increased by approximate 20-25% with increase in recycle rate. The fraction of the stagnant zone was found well below 5% for all performed experiments, which was under experimental error. The substrate removal of 91% for Chemical oxygen demand and 96% for Biochemical oxygen demand were observed for the ASP working at a hydraulic mean residence time 39 h MRT with a 20% recycling of activated sludge.